

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE ENGENHARIA

CURSO DE ENGENHARIA ELÉCTRICA

Projecto de Instalação Eléctrica para Edifício de Três Pisos do Laboratório de Pós-graduação da Faculdade de Engenharia-UEM

Autor:

Martins, Sabão Zacarias

Supervisores:

Da Faculdade:

Msc. Fernando Chaichaia, Engº.

Da Instituição:

António Gomes Zucula

Maputo, 07 de Junho de 2024

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA ELÉCTRICA

Projecto de Instalação Eléctrica para Edifício de Três Pisos do Laboratório de Pós-graduação da Faculdade de Engenharia-UE

Autor:

Martins, Sabão Zacarias

Supervisores:

Da Faculdade:

Msc. Fernando Chaichaia, Engº.

Da Instituição:

António Gomes Zucula

Maputo, 07 de junho de 2024

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

CURSO: ENGENHARIA ELÉCTRICA (LABORAL)

TERMO DE ENTREGA DE RELATÓRIO DE ESTÁGIO PROFISSIONAL

Declaro que o estudante Sabão Zacarias Martins entregou no dia/ / 2024 as 2 cópias do Relatório do seu Estágio Profissional com referência: 2024ELEPD10
ntitulado: Projecto de Instalação Eléctrica para Edifício de Três Pisos do
_aboratório de Petróleo e gás da Faculdade de Engenharia-UEM
Maputo,de de 2024
A chefe da Secretaria
(Arlete Chiconela)

DECLARAÇÃO DE HONRA

Eu, Sabão Zacarias Martins, estudante do curso de Licenciatura em Engenharia Eléctrica na Faculdade de Engenharia-UEM, declaro, sob compromisso de honra, que o presente trabalho intitulado " Projecto de Instalação Eléctrica para Edifício de Três Pisos do Laboratório de Pós-graduação da Faculdade de Engenharia-UEM " é fruto da minha própria investigação e análise. As informações aqui contidas foram obtidas e processadas de acordo com as normas académicas vigentes e respeitando os princípios éticos e legais de autoria.

Certifico que todas as fontes de consulta e referências bibliográficas foram devidamente citadas e creditadas, conforme as regras de formatação estabelecidas pela instituição. Declaro ainda que não cometi plágio ou qualquer outro tipo de fraude académica durante a elaboração deste trabalho.

Assumo a responsabilidade pelo conteúdo apresentado e estou ciente das consequências académicas e legais que podem advir em caso de falsidade ou incorreção desta declaração.

Maputo, Junho de 2024

Salar Zacarias Martins

(Sabão Zacarias Martins)

DEDICATÓRIA

Dedico este trabalho a minha família, especialmente a minha mãe, Maria de Fátima Alberto Rianeque.

AGRADECIMENTOS

Agradeço primeiramente a Deus, pela força e perseverança que me permitiram chegar até aqui.

À minha família, Irmãos: Júlia Gabriel, Bertina Martins, Lorivaldon Martins, pelo apoio incondicional à Família Travessa, Orlando, amor e compreensão durante todos os momentos desta jornada académica. Em especial, agradeço aos meus pais, Zacarias Martins Sabão e Maria de Fátima Alberto Rianeque que sempre acreditaram no meu potencial e me incentivaram a seguir em frente.

Aos meus supervisores, Mestre Fernando Chaichaia, Engo e António Gomes Zucula, pelo conhecimento compartilhado, paciência e orientação fundamental para a realização deste trabalho. Suas valiosas contribuições foram essenciais para o desenvolvimento deste projecto.

Aos professores do curso de Faculdade de Engenharia, em especial aos docentes do Departamento de Engenharia Electrotécnica, pelo ensinamento e dedicação ao longo dos anos. Cada um de vocês contribuiu de maneira significativa para a minha formação académica e profissional.

Aos meus colegas e amigos, Eng. Vinho, Olsa Júnior, Cambula, Dalton, em especial meus irmãos de pais diferentes, Ernesto Jacinto, João Pery, Eduardo Rocha, Isac Agostinho, Eng. Mucuala, Colete, Duarte pelo companheirismo, incentivo e pelas discussões construtivas que enriqueceram esta caminhada. A colaboração e apoio de vocês foram cruciais para superar os desafios encontrados ao longo do curso.

À UEM, em especial a Faculdade de Engenharia pela oportunidade de realizar parte da pesquisa e pelo suporte fornecido. A experiência prática adquirida foi inestimável para o desenvolvimento deste trabalho.

Por fim, agradeço a todos que, de alguma forma, contribuíram para a concretização deste Trabalho. Agradeço por cada palavra de encorajamento, cada gesto de apoio e cada crítica construtiva. Este trabalho é fruto de um esforço colectivo, e sou imensamente grato por toda a ajuda recebida

RESUMO

O trabalho teve como foco principal a elaboração do projecto de instalações eléctricas para um edifício de três pisos, onde previu-se uma potência a contratar de 41,4kVA, em Corrente Alternada em sistema trifásico, onde previu-se a alimentação da mesma pelo PT de 500kVA do DEEL.

Para alcançar esse objectivo, foi adoptada uma metodologia que envolveu a análise das necessidades eléctricas do edifício, o dimensionamento dos circuitos eléctricos, a selecção dos equipamentos e materiais adequados, e a elaboração de diagramas e esquemas detalhados das instalações. As actividades realizadas incluíram visitas técnicas ao local, consultas a normas técnicas, Manuais, artigos científicos e o uso de *software* como AutoCad, Dialux e e-Design para o desenvolvimento do projecto.

Os principais resultados alcançados foram a criação de um projecto eléctrico detalhado e conforme as normas vigentes, garantindo a segurança, eficiência e funcionalidade das instalações. Além disso, o projecto incluiu soluções específicas para o laboratório de solos, atendendo às suas demandas eléctricas particulares.

Palavras-chave: Projecto eléctrico, edifício de três pisos, laboratório de solos, engenharia eléctrica, dimensionamento de circuitos, Potência a contratar, normas técnicas.

ABSTRACT

The primary focus of this work was the development of an electrical installation project for a three-story building, where a contracted power of 41.4kVA was foreseen, in Alternating Current in a three-phase system, with the supply coming from a 500kVA PT of DEEL.

To achieve this objective, a methodology was adopted that involved analysing the electrical needs of the building, sizing the electrical circuits, selecting appropriate equipment and materials, and drafting detailed diagrams and schematics of the installations. The activities carried out included technical visits to the site, consultations with technical standards, manuals, scientific articles, and the use of software such as AutoCAD, Dialux, and e-Design for project development.

The main results achieved were the creation of a detailed electrical project in compliance with current standards, ensuring the safety, efficiency, and functionality of the installations. Furthermore, the project included specific solutions for the soil laboratory, meeting its particular electrical demands.

Keywords: Electrical project, three-story building, soil laboratory, electrical engineering, circuit sizing, contracted power, technical standards.

ÍNDICE

DECLARAÇÃO DE HONRA	iv
DEDICATÓRIA	V
AGRADECIMENTOS	vi
RESUMO	vii
ABSTRACT	viii
LISTA DE FIGURAS	xi
LISTA DE TABELAS	xi
LISTA DE ABREVIATÚRAS	xii
CAÍTULO I: INTRODUÇÃO	
1.1 Contextualização	1
1.2 Formulação de Problema	2
1.3 Justificativa	3
1.4 Objectivos	4
1.4.1. Geral	4
1.4.2. Específicos	4
1.5 Metodologia	4
1.6 Organização do Trabalho	5
CAPÍTULO II: REVISÃO DE LITERATURA	6
2.1 Instalação Eléctrica de Edifício	6
2.2 Regulamentos e Normas	7
2.3 Protecção	7
2.3.1 Da Canalização	7
2.3.2 De Pessoas e Bens	10
2.4 Luminotecnia	13
2.4.1 Grandezas Técnicas	13
2.4.2 Características das lâmpadas e acessórios	14
CAPÍTULO III-DIMENSIONAMENTO E MEMORIAL DESCRITIVO	16

3.1 Localização	16
3.2 Descrição do Edifício	17
3.2.1 Canalização da edificação	19
3.2.2 Tipo de instalação	19
3.3 Previsão de carga	19
3.3.1 Cálculo Luminotécnico	20
3.4 Dimensionamento da Instalação	21
3.4.1 Entrada para QE	21
3.4.2 Portinhola	25
3.4.3 Entrada para os quadros parciais	26
3.4.4 Sistema de aterramento	29
3.4.5 Protecção Contra as Descargas Atmosféricas e Sobretensões	30
3.5 Memorial Descritiva e Justificativa	33
3.5.1 Entrada de Energia	33
3.5.2 Distribuição de Energia	33
3.5.3 Corte Geral de Energia	33
3.5.4 Utilização	34
3.5.5 Especificações técnicas dos Materiais	35
CAPÍTULO IV-ESTIMATIVA DE CUSTO	38
CAPÍTULO V-CONSIDERAÇÕES FINAIS	40
5.1 Conclusão	40
5.2 Recomendações	40
REFERÊNCIA BIBLIOGRÁFICA	41

LISTA DE FIGURAS

Figura 1: Contacto directo	10
Figura 2: Contacto indirecto	11
Figura 3: Eficiência Energética	14
Figura 4: Temperatura de cor	15
Figura 5: Faculdade de Engenharia-UEM	16
Figura 6: Edifício do Laboratório de Pós-graduação	17
Figura 7: Fusíveis classe gL/gG - tipo NH contato faca	26
Figura 8:Modo do sistema de aterramento (quadro vazio)	29
Figura 9: Volume protegido por uma haste de captura	30
Figura 10: Planta baixa da edificação com ajustes de dimensões	31
Figura 11: Regia do volume protegido, vista de cima	32
LISTA DE TABELAS	
Tabela 1: Classificação dos Compartimentos quanto ao ambiente	18
Tabela 2: Potência a ser consumida na iluminação geral	20
Tabela 3: Dimensionamento da canalização para Laboratório	27
Tabela 4: Dimensionamento da canalização para Rés-do-Chão	27
Tabela 5:Dimensionamento da canalização para 1 Andar	28
Tabela 6: Dimensionamento da canalização para 2 andar	28
Tabela 7:Índices de Protecção em função das classificação do local	35
Tabela 8: Estimativa de custo do projecto	38

LISTA DE SIMBOLOS

BTE Baixa Tensão Especial
BTN Baixa Tensão Normal

ISF Interruptor-seccionador-fusível
PBT Portinhola de Baixa Tensão
LxAxP Largura Altura Profundida

RTIEBT Regras Técnicas das Instalações Eléctricas de Baixa Tensão

QE Quadro de Entrada

QDPL Quadro de Distribuição Parcial do Laboratório QDP1 Quadro de Distribuição Parcial do primeiro Andar QDP2 Quadro de Distribuição Parcial do segundo Andar QDPR Quadro de Distribuição Parcial do Rés-do-Chão

TUG Tomada de Uso Geral
TUE Tomada de Uso Específico

IL Iluminação

PT Posto de Transformação

SPDA Sistema de Protecção contra Descargas Atmosféricas

DPS Disjuntor de Protecção de Sobretensão

Qtd Quantidade

P Potência da carga Pi Potência à instalar cosφ Factor de Potência

Si Potência Aparente à instalar

Fu Factor de Utilização

Fs Factor de Simultaneidade

Su' Potência Aparente aplicado os factores de utilização

Su" Potência Aparente aplicado os factores de utilização e simultaneidade

Sc" Potência a contratar
Dis. Max Distância Máxima
S.Cabo Secção do Cabo
dU Queda de Tensão

In Corrente nominal do Dispositivo de protecção

IB Corrente de serviço

Iz Corrente Admissível do cabo

Izc Corrente Admissível Corrigida do cabo

Icc Corrente de curto-circuito

ta Tempo de actuação do dispositivo sem que o cabo fique fadigado

Pdc Poder de Corte

CAÍTULO I: INTRODUÇÃO

1.1 Contextualização

A electricidade é uma forma de energia limpa que advém da transformação de outros

tipos de energia, sendo esta a mais fácil de converter e utilizar. Nos dias atuais, tornou-

se um factor indispensável para o desenvolvimento socioeconómico e a melhoria da

qualidade de vida. Sua aplicação se estende por diversos sectores, incluindo residencial,

industrial, comercial e educacional.

O laboratório de solos da Faculdade de Engenharia-UEM actualmente usado para

realização de pesquisas, não oferece uma boa comodidade, no que se refere ao espaço

que este oferece. Com isso, surge a necessidade de expandir-se o laboratório e salas

de aulas que agora encontram-se em construção, com o objectivo de aumentar a

capacidade de pesquisa e inovação. O laboratório aqui a ser construido pertenserá à

categoria de energias (Petróleo e gás). Para isso, é essencial que esses espaços

disponham de ambientes saudáveis e seguros.

Este trabalho está centrado na elaboração de um projecto de instalação eléctrica para

edifício de três pisos que está actualmente em construção na Faculdade de Engenharia-

UEM. Este edifício abrigará o Laboratório de petróleo e gás, além de gabinetes e salas

de aula.

A eficiência e segurança das instalações eléctricas são fundamentais para garantir o

pleno funcionamento de edifícios destinados ao ensino e à pesquisa científica,

minimizando riscos e maximizando a produtividade.

No contexto da Faculdade de Engenharia da UEM, especialmente no edifício de três

andares do Laboratório, a necessidade de um projecto de instalação eléctrica robusto e

adequado se torna ainda mais evidente. Este laboratório é um espaço vital para o

desenvolvimento académico e científico, oferecendo condições apropriadas para

pesquisas avançadas e formação de profissionais qualificados.

Ao longo deste trabalho, serão discutidos os principais aspectos técnicos, normativos e

práticos envolvidos na elaboração do projecto de instalação eléctrico, com o objectivo de

oferecer uma solução abrangente e adequada às necessidades específicas do edifício.

Será abordada questões como a conformidade com as normas de segurança.

1

Por fim, este estudo pretende contribuir para a criação de um ambiente de pesquisa mais seguro e eficiente, alinhado com as necessidades da comunidade académica da UEM.

A implementação de um projecto de instalação eléctrica bem estruturado não só promove a segurança e a eficiência energética, mas também fortalece a infra-estrutura necessária para a inovação e o avanço científico na universidade.

1.2 Formulação de Problema

Actualmente, o Laboratório de Solos enfrenta um esgotamento de espaço para acomodar estudantes e novos equipamentos de pesquisa. Esta limitação não apenas compromete a qualidade da formação académica, mas também pode retardar significativamente o desenvolvimento económico nacional. A falta de infra-estrutura adequada para pesquisa local obriga o Governo a investir em pesquisadores estrangeiros ou a enviar estudantes para instituições internacionais, resultando em custos elevados e na dependência de soluções externas.

Investir na expansão e modernização dos laboratórios locais permite que os estudantes desenvolvam soluções adaptadas às necessidades e desafios específicos do país. Isso não só fortalece a capacidade de inovação nacional, como também fomenta a autosuficiência tecnológica e científica. Além disso, a criação de um ambiente de pesquisa robusto e bem equipado atrai talentos e investimentos, promovendo um ciclo virtuoso de desenvolvimento académico e económico

Diante da necessidade crítica de uma instalação eléctrica confiável e bem projectada para o edifício de três pisos do Laboratório de petróleo e gás da Faculdade de Engenharia-UEM, surge o desafio de desenvolver um projecto eléctrico económico que garanta segurança e fiabilidade.

A ausência ou má qualidade da electricidade pode comprometer não apenas as actividades diárias do laboratório, mas também distorcer os resultados experimentais, causando impactos negativos na pesquisa científica e no ensino. Portanto, é fundamental que um edifício, independentemente do tamanho e da complexidade, disponha de um projecto eléctrico que estabeleça as normas e as boas práticas de engenharia eléctrica, o que facilita a execução e futuras manutenções.

Daí surge a pergunta de partida:

 De que modo pode-se dispor de uma instalação eléctrica económica e segura para o Laboratório de pós-graduação da Faculdade de Engenharia-UEM?

1.3 Justificativa

Em ambientes laboratoriais, a energia eléctrica desempenha um papel fundamental para o funcionamento adequado e seguro das actividades científicas e de pesquisa. Diante esta situação, a justificativa deste trabalho sustenta-se na descrição dos seguintes pontos:

- Alimentação de equipamentos: Uma grande variedade de equipamentos laboratoriais dependem da energia eléctrica para funcionar.
- Iluminação adequada: A electricidade é essencial para proporcionar iluminação adequada durante experimentos, facilitando a precisão e segurança das operações.
- Segurança: Sistemas de segurança, como alarmes de incêndio e iluminação de emergência, são alimentados por energia eléctrica para garantir a segurança dos usuários e das amostras manipuladas.
- Análise e processamento de dados: Computadores e equipamentos electrónicos utilizados para análise e processamento de dados dependem da energia eléctrica para funcionar.

É importante referir que a disponibilidade confiável de electricidade é crucial para manter a continuidade das actividades laboratoriais e garantir resultados precisos e seguros.

1.4 Objectivos

1.4.1. Geral

 Projectar a instalação eléctrica para o edifício de três pisos do Laboratório de Pós-Graduação da Faculdade de Engenharia-UEM.

1.4.2. Específicos

- Descrever o edifício levando em consideração a classificação do mesmo quanto ao ambiente e os compartimentos quanto a utilização;
- Elaborar o estudo do cálculo luminotécnico de todos os compartimentos do edifício;
- Dimensionar a canalização e os dispositivos de protecção para o edifício;
- Elaborar os esquemas eléctricos de tomadas, iluminação e do sistema de segurança;
- Fazer a estimativa do custo relativo ao projecto.

1.5 Metodologia

Para a elaboração do trabalho, satisfazendo assim os objectivos traçados, foi utilizado como método de pesquisa qualitativa. Este método proporciona uma análise mais detalhada dos dados, e seus instrumentos de colecta de dados não são estruturados, o que constitui uma vantagem, uma vez que os dados a serem apresentados não requerem quantificação. Os instrumentos de colecta de dados consistiram em:

- Pesquisa Documental, a ser conduzida com os documentos disponibilizados pela Faculdade, especialmente o projecto arquitectónico do edifício em construção.
- Pesquisa Bibliográfica, utilizada para embasar o estudo sobre o projecto eléctrico, por meio de normas, artigos publicados e manuais.
- Entrevista, realizada de forma semiestruturada com o responsável da obra e
 profissionais da área eléctrica, pertencentes ou não ao corpo docente da
 faculdade. Nesse contexto, não foi elaborado um roteiro de questões por parte do
 entrevistador.

Desenhos, elaborados para representar as peças dos esquemas eléctricos, utilizando os *softwares* AutoCAD, Dialux evo, e-Design da ABB.

- AutoCAD foi usado para elaboração dos traços das peças desenhadas do projecto.
- Dialux evo foi usado para efectuar o cálculo luminotécnico para a edificação
- e-Design foi usado para efectuar o dimensionamento das canalizações, assim como as protecções dos circuitos do projecto.

1.6 Organização do Trabalho

O trabalho está dividido em 5 Capítulos e Referências Bibliográficas, dos quais temos:

- CAPÍTULO I: INTRODUÇÃO, faz-se uma breve apresentação do trabalho, a parte introdutória, apresenta-se a formulação do problema, a justificativa da escolha do tema, os objectivos do trabalho e a metodologia usada para a realização do relatório.
- CAPÍTULO II: REVISÃO DA LITERATURA, aqui faz-se a descrição e fundamentação teórica dos componentes que fazem parte do sistema a ser projecta, assim como os conceitos dos elementos envolvidos na elaboração do relatório.
- CAPÍTULO III: DIMENSIONAMENTO E MEMORIAL DESCRITIVO, constitui a base do projecto, onde se apresentam os cálculos efetuados nos dimensionamentos dos dispositivos de protecção, canalização, e as peças desenhadas que se encontram em anexo do trabalho.
- CAPÍTULO IV: ESTIMATIVA DE CUSTO, neste capítulo será apresentada estimativas de custo dos materiais a serem utilizados, assim como a mão-de-obra, para que a execução do mesmo seja cumprida.
- CAPÍTULO V: CONSIDERAÇÕES FINAIS, neste ponto são apresentadas as conclusões tiradas, as dificuldades encontradas na execução e recomendações ou sugestões para futuros estudos e/ou projectos relacionados a esta área de conhecimento
- REFERÊNCIA BIBLIOGRAFIA, neste capítulo são apresentadas as referências utilizadas que serviram como base para a realização do trabalho.

CAPÍTULO II: REVISÃO DE LITERATURA

2.1 Instalação Eléctrica de Edifício

RTIEBT define instalação eléctrica (de utilização) (de edifícios), como "conjunto de

equipamentos eléctricos associados com vista a uma dada aplicação e possuindo

características coordenadas". Sendo estes equipamentos seleccionados tendo em conta

as solicitações e as condições ambientais particulares do local onde forem instalados e

a que possam ficar sujeitos.

Uma instalação de utilização pode compreender apenas a instalação eléctrica destinada

a permitir aos seus utilizadores a aplicação directa da energia eléctrica ou ainda, postos

de transformação e de corte, linhas de alta tensão, redes de distribuição em baixa tensão

ou centrais geradoras.

As instalações de utilização destinadas à aplicação directa da energia eléctrica

englobam, em geral, instalações de baixa tensão (para emprego de aparelhos de

utilização de uso corrente), instalações de tensão reduzida (para sinalização, telefones,

etc.) e instalações de alta tensão (para iluminação por lâmpadas ou tubos de descarga,

para emprego de aparelhos de electromedicina, para iluminação de pistas de aeroportos,

para alimentação de aparelhos de utilização de elevada potência,

O Decreto n.º 60/2021 de 18 de Agosto, define Instalação eléctrica – equipamento e infra-

estruturas destinadas ao fornecimento de energia eléctrica até ao contador do

consumidor.

As instalações eléctricas de utilização de edifícios são constituídas por:

• Canalização Eléctrica: Conjunto constituído por um ou mais condutores

eléctricos e pêlos elementos que asseguram o seu isolamento eléctrico, as suas

protecções mecânicas, químicas e eléctricas e a sua fixação, devidamente

agrupados e com aparelhos de ligação comuns.

Medição e protecção: refere-se aos equipamentos que monitorizam e protegem

as instalações eléctricas. São estes os medidores, os disjuntores, ou fusíveis e os

relés.

• Cabeamento: refere-se aos fios e cabos responsáveis por conduzir e conectar a

fonte de energia às cargas eléctricas.

6

 Controlo: refere-se à capacidade da instalação de accionar e desactivar as cargas. Um bom exemplo de equipamento de controlo são os interruptores do sistema de iluminação.

2.2 Regulamentos e Normas

Uma boa instalação eléctrica deve ser dimensionada tendo em conta na protecção da canalização, protecção de pessoas e bens, olhando os custos (económica) e fiabilidade da instalação. Para isso deve ser projectada atendendo as normas locais.

Neste projecto as normas e regulamentos a serem satisfeitos em sua elaboração e a servirem de base para utilização e exploração, são os seguintes:

- Regras Técnicas de Instalações Eléctricas de Baixa Tensão (RTIEBT);
- Decreto-Lei n.º 48/2007 De 28 de Outubro-Moçambique;
- Decreto-Lei n.º 740/74 De 26 de Dezembro, que compreende a RSUIEE e RSICEE
- Decreto n.º 60/2021 de 18 de Agosto.

Também procurar-se-á apelar ao cumprimento das práticas das Regras de Boa Arte, de forma a promover a qualidade geral da instalação. Em conformidade, descrevem-se e justificam-se neste projecto as opções técnicas tomadas, e apresentam-se os cálculos efetuados para o dimensionamento das soluções preconizadas.

2.3 Protecção

2.3.1 Da Canalização

Para a protecção da canalização (condutores) deve se ter em conta a protecção contra sobrecarga e curto-circuito. Pode ser assegurada por disjuntores magneto-térmicos (protecção de curto – circuito e sobrecarga) ou por fusível.

Segundo a CERTIEL a protecção contra sobreintensidade devera obedecer algumas regras:

 A interrupção do circuito em defeito deverá ser efectuada em tempo total compatível com as restrições térmicas e electrodinâmicas, olhando para o curtocircuito. O poder de corte do dispositivo de protecção deverá, no mínimo, ser igual a corrente máxima de curto-circuito do local.

2.3.1.1 Contra Sobrecarga

A protecção contra as sobrecargas das canalizações deverá simultaneamente obedecer às seguintes condições:

1. Condição: O calibre do dispositivo de protecção (I_n) deve ser maior ou igual a corrente de serviço (I_B) e menor ou igual a corrente admissível corrigida do cabo (I_{ZC}) .

$$I_B \le I_n \le I_{ZC} \tag{2.1}$$

2. Condição: A corrente convencional de funcionamento (I_2) deve ser maior ou igual a 1.45 da corrente admissível do cabo (I_{ZC}).

$$I_2 \ge 1.45I_{ZC} \tag{2.2}$$

2.3.1.2 Contra Curto-circuito

A protecção contra curto-circuito das canalizações deverá simultaneamente obedecer às seguintes condições:

 Regra de poder de corte, o poder de corte n\u00e3o deve ser inferior a corrente de curto-circuito no local.

$$I_{CC} \le Pdc \tag{2.3}$$

Regra de tempo de corte, O aparelho deverá ter um poder de corte superior à
corrente de curto-circuito mais desfavorável e também ter um tempo de actuação
inferior, ao tempo de fadiga térmica da canalização e a cinco segundos.

$$\sqrt{t_c} = k \times \frac{S}{I_{CC}} \tag{2.4}$$

Onde:

 t_c – Tempo de actuação da protecção

k– Constante, de depende do tipo de isolamento de alma condutora, igual a 115 para condutor de cobre e isolamento em PVC

S – Secção do condutor em mm2

I_{CC}– Corrente de curto-circuito eficaz em A

2.3.1.3 Queda de Tensão

A queda de tensão nos circuitos de distribuição e alimentação dos quadros e receptores é considerada um dos argumentos avaliadores da qualidade de serviço. O valor da queda de tensão máxima admissível é referido como percentagem da tensão nominal simples. Segundo CERTIEL, quando a queda de tensão ultrapassa a que é indicada no regulamento, interfere directamente no mau funcionamento dos equipamentos e na eficiência energética, visto que, quando os dispositivos são alimentados por uma tensão abaixo da sua tensão nominal, ela demanda maior corrente, causando assim possíveis defeitos do mesmo e também maiores taxas de energia.

A queda de tensão é dada pela expressão:

$$u = \frac{\sqrt{3}I_B \rho L}{S \cos \varphi} \tag{2.5}$$

Queda de tensão percentual:

$$\Delta u = 100u/U_c \tag{2.6}$$

Onde

I_B – Corrente de serviço em A

 ρ – Resistividade dos condutores: para alma de cobre 0,0225 $\Omega*mm^2/m$ à 20°C

L- Comprimento simples do cabo em *metros*

S – Secção do cabo em mm^2

 $\cos \varphi$ – Factor de potência

 U_c – Tensão de linha da instalação em V

O Art. 425.° do RSIUEE admite uma queda de tensão não superior a 3 ou 5% da tensão nominal da instalação, desde a origem da instalação de utilização até ao aparelho de

utilização electricamente mais afastado, supostos ligados todos os aparelhos de utilização que possam funcionar simultaneamente.

2.3.2 De Pessoas e Bens

Nas instalações de utilização deverão ser adoptadas disposições destinadas a garantir a protecção das pessoas contra os perigos específicos da electricidade (choques eléctricos) seja por contacto directo ou indirecto nas partes da instalação com potencial não nulo.

2.3.2.1 Protecção contra contacto directo

A instalação deve ter a sensibilidade de actuar a protecção em caso que uma pessoa entre em contacto com a parte activa dos condutores (sob tensão), a figura 1 mostra uma pessoa sendo atravessada por uma corrente entre a fase L1 e a terra.

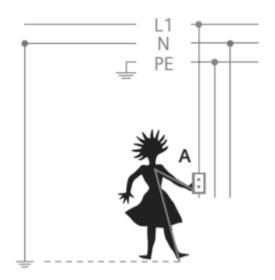


Figura 1: Contacto directo. Fonte: (REIS, 2016)

Pode ser feita a protecção das partes activas através:

- Do isolamento que possa ser retirado por destruição;
- Colocação das partes activas dentro de invólucros ou por detrás de barreiras que tenham, pelo menos, um código IP2X, e IP4X para invólucros horizontais que sejam facilmente acessíveis.
- Protecção complementar por dispositivos de protecção sensíveis à corrente diferencial-residual (abreviadamente dispositivos diferenciais).

2.3.2.2 Protecção contra contacto indirecto

Considera-se contacto indirecto, como contacto de pessoas (ou aninais) em massas colocadas acidentalmente sob tensão, como está ilustrada na figura 2, a corrente não travessa totalmente no corpo humano, visto que há uma que passa directamente da massa para a fonte.

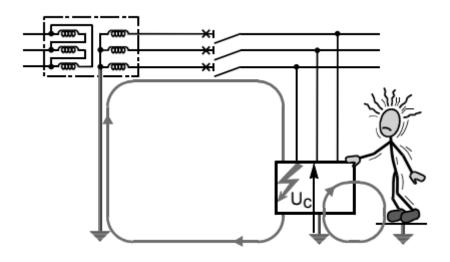


Figura 2: Contacto indirecto. Fonte: (SANTOS, 2009)

Para protecção contra os contactos indirectos deve se assegurar:

- Equipotencialidade à terra de todas as partes condutoras dos equipamentos;
- Gerir as tensões perigosas por colocação fora de tensão automática da parte onde ocorreu o defeito de isolamento perigoso, por um dispositivo de protecção;
- Este dispositivo de protecção deve funcionar dentro de um tempo compatível com o dos quadros «Duração máximos de tensão de contacto»;
- Duas massas simultaneamente acessíveis devem ser religadas a uma mesma tomada de terra.

"Em todas as partes das instalações dos estabelecimentos recebendo público em que tenha sido adoptada a medida de protecção contra os contactos indirectos por corte automático da alimentação, os dispositivos de corte automático dos circuitos finais devem, independentemente do esquema de ligações à terra da instalação, ser diferenciais. O emprego de dispositivos diferenciais permite, também, garantir protecção contra os

incêndios causados por defeitos de isolamento nos circuitos finais das instalações eléctricas." (CERTIEL, 2010, p. 2. ficha 31)

2.3.2.3 Protecção Contra Descargas Atmosféricas

Segundo a Norma NP EN 62305 – 1, Os danos provocados pelas descargas atmosféricas podem ser causados por impacto directo, impacto perto da estrutura ou através dos serviços de entrada, com isso ter um sistema de protecção contra as descargas atmosféricas é indispensável para um edifício, mas para tal é necessário avaliar os riscos nele envolvido, para a definição da classe de nível de protecção que é usada para o dimensionamento do SPDA, onde estes segundo a norma são classificados como: Nível I, II, II e IV.

A necessidade de proteger uma estrutura contra uma descarga atmosférica é determinada pelo valor de risco R_X , desde que o mesmo seja superior ao risco tolerável $R_T = 10^{-5}$: $R_X > R_T$.

$$R_X = N_X \times P_X \times L_X \tag{2.}$$

Onde:

 N_X é o número de eventos perigosos anuais, para a estrutura considerada P_X é a probabilidade de que este evento provoque uma falha L_X é o montante das perdas geradas por essa falha

Pode calcular-se para uma mesma estrutura até 4 riscos diferentes em função das perdas consideradas:

- Perdas de vidas humanas ou invalidez permanente
- Perdas de serviços públicos
- Perdas de património cultural
- Perdas económicas

Em função do valor de risco R_X , uma vez comparado com o risco tolerável R_T , a protecção pode ou não ser necessária. Caso seja necessária, os meios de protecção a utilizar e o seu nível de protecção associado são determinados, sendo a de prioridade o nível mais alto para o mais baixo.

2.4 Luminotecnia

Segundo (NUNES,2006, apud PAIS, 2011, p.6) "luminotecnia é a ciência que estuda as diversas formas de produção, controlo e aplicação da iluminação artificial". A iluminação artificial possibilita a execução de tarefas e a segurança em ambientes fechados e quando a presença de luz natural não é possível ou é insuficiente.

É de extrema importância ter ambientes com um bom nível de iluminância, caso contrário, a má qualidade de luz no local, seja ela por insuficiência ou excesso de lux, proporcionará possíveis lesões visuais. Para isso são estabelecidas algumas normas, recomendando o cumprimento de três aspectos no âmbito visual muito importantes:

- a) Conforto visual, onde as pessoas têm uma sensação de bem-estar, o que de forma indirecta contribui para uma maior produtividade e maior qualidade de trabalho:
- b) Performance visual, onde as pessoas são capazes de realizar tarefas visuais, mesmo sob circunstâncias menos boas e durante períodos mais longos;
- c) Segurança visual, onde ao olhar ao redor, as pessoas possam detectar perigos com facilidade.

Um cálculo luminotécnico pode ser resumido em:

- Escolha da lâmpada e da luminária mais adequada.
- Cálculo da quantidade de luminárias.
- Disposição das luminárias no recinto.

2.4.1 Grandezas Técnicas

É importante ter o conhecimento das grandezas para melhor entendimento do assunto, com isso, serão apresentados algumas grandezas que fazem parte no estudo da luminotecnia.

- Fluxo Luminoso (φ) é a radiação total da fonte luminosa, medida em lúmens (lm), na tensão nominal de funcionamento.
- Intensidade Luminosa (I) é o fluxo Luminoso irradiado na direcção de um determinado ponto, medido em candela (cd).
- Curva de distribuição luminosa (CDL) é a representação da Intensidade luminosa em todos os ângulos em que ela é direccionada num plano.

 Iluminância (E) – indica o fluxo luminoso de uma fonte de luz que incide sobre uma superfície situada à uma certa distância desta fonte, com unidade de medida em lux, e é expressa pela razão do fluxo luminoso e a área incidente, indicada na expressão 2.6.

$$E = \frac{\varphi}{A} \tag{2.8}$$

2.4.2 Características das lâmpadas e acessórios

Para uma boa eficiência das lâmpadas, olhando a quantidade de energia que elas consomem e a quantidade de lúmens, é necessário fazer o estudo de suas características, para uma boa selecção das mesmas, olhando assim o custo e benefício.

a) Eficiência energética (K)

As lâmpadas se diferenciam entre si não só pelos diferentes fluxos luminosos que elas irradiam, mas também pelas diferentes potências que consomem. Para poder comparálas, é necessário que se saiba quantos lúmens são gerados por watt absorvido. (OSRAM, 2000, p. 5). A figura 3 ilustra os tipos de lâmpadas olhando a Eficiência Energética.

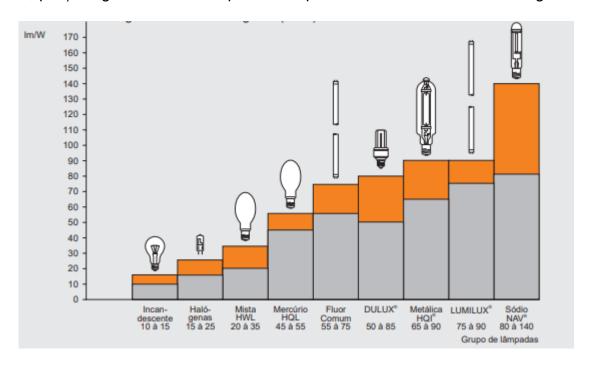


Figura 3: Eficiência Energética (Im/W). Fonte: (OSRAM, 2000)

b) Temperatura de cor (T)

Esta característica é muito importante na escolha de lâmpada, dependendo do tipo de ambiente há uma temperatura de cor mais adequada para tal aplicação. Quando se diz, que um sistema de iluminação apresenta luz "quente" não significa que a luz apresenta uma maior temperatura de cor, mas sim que a luz apresenta uma tonalidade mais amarelada temperatura. Da mesma forma, quanto mais alta for a temperatura de cor, mais "fria" será a luz. Como está indicada na figura 4.

Figura 4: Temperatura de cor. Fonte: (OSRAM, 2000)

c) Índice de reprodução de cores (IRC ou Ra)

As variações de cor dos objectos iluminados sob fontes de luz diferentes podem ser identificadas através de um outro conceito, Reprodução de Cores, e de sua escala qualitativa Índice de Reprodução de Cores (Ra ou IRC). (OSRAM, 2000, p. 6)

CAPÍTULO III-DIMENSIONAMENTO E MEMORIAL DESCRITIVO

3.1 Localização

A Faculdade de Engenharia está localizada na cidade de Maputo concretamente no distrito de Kamubukwana, Av. de Moçambique com as seguintes coordenadas geográficas 25°56'09"S 32°32'55"E. A cidade de Maputo, onde está localizada a Faculdade de Engenharia-UEM, apresenta um clima subtropical seco com uma média de temperatura de 28°C, podendo atingir máximas de 38°C durante os meses mais quentes. A precipitação média anual é de 63mm, conforme estudos realizados entre 2017 e 2021 pelo Instituto Nacional de Meteorologia (INAM). Com forme a figura 5, o projecto será implementado na Engenharia, atrás do DEEL.



Figura 5: Faculdade de Engenharia-UEM. Fonte: GOOGLE EARTH

3.2 Descrição do Edifício

Figura 6: Edifício do Laboratório de Pós-graduação. Fonte: Autor

O presente projecto refere-se à projecção de instalação eléctrica do edifício do laboratório de petróleo e gás, localizado na Faculdade de Engenharia da Universidade Eduardo Mondlane. O edifício é composto por três pisos, que estão descritos na tabela 1, as suas áreas. A classificação do mesmo quanto a utilização é um edifício recebendo público, pois pertence a edificação de ensino, assim como este apresenta uma lotação cumulativa de 154, classificando-se como de 4ª categoria.

Para além de classificar o edifício quanto a sua utilização, é necessário também, classificar os compartimentos que nele pertencem tendo em conta o seu ambiente. Pois existem regulamentações a considerar em função das características do material da instalação considerando o ambiente, segundo o Art. 83.º do RISUEE os ambientes são classificados como:

- Locais SRE Locais sem riscos especiais
- Locais THU Locais temporariamente húmidos
- Locais HUM Locais húmidos
- Locais MOL Locais molhados

- Locais EPT Locais expostos
- Locais SUB Locais submersos
- Locais POE Locais poeirentos
- Locais ACO Locais de ambiente corrosivo
- Locais ATP Locais sujeitos a altas temperaturas
- Locais BTP Locais sujeitas a baixas temperaturas
- Locais AMI Locais sujeitas a acções mecânicas intensas
- Locais RIN Locais com risco de incêndio
- Locais REX Locais com risco de explosão

Tabela 1: Classificação dos Compartimentos quanto ao ambiente

			Área	Altura	Lotação	Influências	Classificação
	Piso	Compartimento	(m^2)	(m)		Externas	do ambiente
					50	AA4+AB4+AE2	
		Laboratório				+AF3+AG2+BC2	SRE
1	_		71,91	2,8		+XX1	
2	Rés-do-Chão	WC Masculino	6,23	2,8	6		THU
3	다 당	WC Feminino	6,06	2,8	6	AA4+AB4+XX1	THU
4	ᅌ	Sanitário	2,66	2,8	2		THU
)-S:					AA4+AB4	POE
5	Ré	Arrumos	6,26	2,8		+AE3+BC2+XX1	
6		Hall	9,16	2,8		AA4	SRE
7		Corredor	45,76	2,8		AA7+AB4+AD1	THU
8		Escada para 1	-	2,8		AA4+AB4	SRE
9		Gabinete 1	17,34	2,8	8		SRE+RIN
10		Gabinete 2	17,34	2,8	8	AA4+AB4+BC2	SRE+RIN
11		Gabinete 3	22,78	2,8	11	+XX1	SRE+RIN
	ЭĽ	Sala de				TAXI	SRE+RIN
12	Andar	Reuniões	30,45	2,8	15		
13		Arrumos 1	6,26	2,8		AA4+AB4	SRE
14	-	Corredor	45,75	2,8		AA7+AB7+XX1	THU
				2,8		AA4+AB4+BC2+	SRE
15		Escada para 2	-			XX1	
16		Sanitário	2,66	2,8		AA4+AB4+XX1	THU
17		Sala 1	35,7	2,8	18	AA4+AB4+BC2+	SRE
18		Sala 2	35,19	2,8	18	XX1	SRE
19		Gabinete 4	23,05	2,8	11	^^1	SRE+RIN
20	2 Andar	Arrumos 2	6,26	2,8		AA4+AB4+XX1	SRE
	\ \					AA7+AB7+BC2+	THU
21	2 /	Corredor	45,75	2,8		XX1	
		Escada para					SRE
22		Terraço	-	2,8		AA4+AB4+XX1	
23		Sanitário	2,66	2,8	2	AA4+AB4+AD1	THU

Fonte: (Autor)

Com isso, chega-se as áreas úteis dos pisos, Rés-do-chão de 138,88m2, Primeiro Andar 139,92m2 e Segundo Andar 148,61m2, que serão usadas como partida no dimensionamento de potência mínima de iluminação e tomada a considerar para a instalação, segundo o Quadro XIV do RISUIEE.

O laboratório diferentemente dos outros compartimentos, apresentara dois métodos de referência para a sua instalação de utilização.

3.2.1 Canalização da edificação

Para a definição do tipo de canalização a usar, teve-se em conta as classificações dos locais quanto ao ambiente e o tipo de actividade a ser elaborada.

O laboratório é considerado como um local que apresentam máquinas, e quanto a classificação do ambiente, classifica-se como local sem riscos especiais (SRE), com isso, optou-se em canalizações fixas à vista para circuitos de Força e Tomadas, e embebida para circuito de iluminação. A canalização fixa à vista apresenta a facilidade na manutenção em caso de avaria, manipulação, em casos de acréscimo de carga.

Em outros compartimentos e pisos serão feitas canalizações embebidas.

3.2.2 Tipo de instalação

A instalação eléctrica para esse edifício, será feita em baixa tensão, cuja alimentação será feita em corrente alternada, tendo e conta os padrões nacionais. Dependendo da potência a instalar e as cargas a instalar, esta pode ser alimentada em um sistema trifásico ou monofásico, que será feita no estudo da previsão de carga em **3.3.**

3.3 Previsão de carga

A previsão de carga será feita tendo em conta o Quadro XIV disposto pelo RISUIEE no artigo 418 **anexo 3 tabela A3-26**, onde estabelece uma potência por unidade de área 30 W/m² de iluminação e tomada de uso geral, para estabelecimentos de ensino.

Sendo:

- 10W/m² para iluminação
- 20W/m² para tomada de uso Geral
- 80 W/m² para climatização

Tendo em conta que o estabelecimento não constitui uma habitação, correspondem as divisões principais como a norma RISUEE diz, as que tenham uma área superior a 4 m² exceptuando sanitários, arrumos corredores varandas, e mais. Teve-se em conta este aspecto para a realização do cálculo.

Com os cálculos apresentados em **Anexo 1 tabela A1-1** obterem-se as seguintes cargas mínimas para instalação:

- RÉS-DE-CHÃO, foi prevista uma carga de 719.1W para iluminação, 1438.2W para tomada de uso geral.
- 1 ANDAR, no mesmo anexo, uma carga de 879.1VA para iluminação, 1758.24W
 para tomada de uso geral e 7032.8W para climatização.
- 2 ANDAR, 939.4W de iluminação, 1878.8W de tomada de uso geral e 7515.2W de climatização.

A potência mínima a instalar obteve-se um total de 22160.8W. Com isso, prevê-se uma instalação de utilização trifásica.

3.3.1 Cálculo Luminotécnico

Com os níveis recomendados de iluminância em cada compartimento, foram feitos os cálculos de luminotecnia, tendo em conta todos os aspectos de cálculo e com auxílio do *software* (Dialux evo 12.1) para o posicionamento das luminárias e certificação dos resultados, o mesmo está apresentado no **Anexo 1 tabela A1-2 à A1-4.** Foram aderidos um cumulativo de 90 luminárias de 40W de potência cada, não incluindo as escadas,

Tabela 2: Potência a ser consumida na iluminação geral

	Luminárias	Potência unitária (W)	Potência total (W)
Rés-do-chão	27	40	1080
1 Andar	34		1360
2 Andar	29		840
Escadas	3		120
Total	93		3720

Fonte: (Autor)

3.4 Dimensionamento da Instalação

3.4.1 Entrada para QE

A entrada da instalação será dimensionada em função da potência real a contratar, visto que ela é maior que a potência, que a potência mínima feita com a previsão tendo em conta as divisões principais.

$$S_C = \left(\sum S_i \times Fu\right) \times Fs \times Fe \tag{3.1}$$

A potência a contratar em **Anexo 2 tabela A2.2-6**, resultou num total de 41364VA. Como foi visto anteriormente em **3.2.1**, ela constitui uma instalação trifásica.

Corrente de Serviço

$$I_B = \frac{S_C}{U\sqrt{3}} = \frac{41364VA}{400V \times \sqrt{3}} = 59.775A$$

3.4.1.1 Protecção Contra Sobrecarga e Curto-circuito

- a) Protecção contra Sobrecarga
- Secção do Cabo

Usando a condição de sobrecarga na protecção da canalização $I_B \leq I_n \leq I_{ZC}$ e $I_2 \leq 1.45 I_{ZC}$.

Considerando a secção do cabo para corrente não corrigida $I_Z=80A$ para 4 cabos de cobre enterrados de secção $10mm^2$ (Anexo 3 Tabela A3-27) tendo em conta os factores de correcção para cabos agrupamentos e factor de correcção da temperatura ambiente diferente de 20° C

$$I_{7C} = \gamma \beta I_7 \tag{3.2}$$

Onde:

 γ é o factor de correcção tendo em conta a temperatura ambiente diferente de $20^{\circ}\mathrm{C}$

 β é o factor de correcção de agrupamento de cabos.

Os valores foram tirados no Anexo 3 tabela A3-28

 $\beta = 0.75$ para 4 cabos agrupados, em multicondutores enterrados

 $\gamma = 0.88$ para temperatura ambiente 30°C e cabo com tensão nominal de até 4.7kV

$$I_{ZC} = 0.88 \times 0.75 \times 80 = 52.8A$$

Esse cabo não satisfaz, com isso leva-se um imediatamente superior, que é de $16mm^2$ com $I_Z=110A$, Cabo VAV 4X16 0.6/1kV

$$I_{ZC} = 0.88 \times 0.75 \times 110 = 72.6A$$

Satisfazendo assim $I_B < I_{ZC}$.

Calibre do dispositivo de protecção

Assim o calibre escolhido do dispositivo de protecção é $I_n=63A,\,I_2=85A$

$$I_2 = 85A < I_{ZC} = 1.45 \times 72.6A = 105.27A$$

Satisfaz as condições de sobrecarga.

b) Contra Curto-Circuito

O tempo de actuação do dispositivo de protecção em condição de curto-circuito deve ser inferior de 5s, para isso deve ter-se em conta a resistência do cabo.

Resistência de Cabo a montante do Quadro Geral de Distribuição

Segundo (SAICE, 2023, p.40) o PT do DEEL possui uma potência de 500 kVA. Onde prevê-se a ligação para nova instalação, pois segundo os cálculos feito pelo mesmo autor, este PT apresenta uma capacidade para inserção de mais carga. E encontra-se a uma distância de 10m do ponto de entrega do **QE** do novo edifício.

A resistividade de cobre foi obtida em Anexo 3 tabela A3.1-30, à temperatura de 20°C.

Com isso, temos:

$$R_{Cu20^{\circ}C} = \frac{\rho_{20^{\circ}C}L}{A} \tag{3.3}$$

Onde:

 $R_{Cu20^{\circ}\text{C}}$ é resistência eléctrica do cobre à 20°C em [Ω]

 $ho_{20^{\circ}\text{C}}$ é a resistividade do cobre à 20°C [0.0178 $\frac{\Omega mm^2}{m}$]

L é o comprimento do cabo [m]

A é a secção do cabo em $[mm^2]$

Os dados existentes para a determinação da resistência são:

$$A = 16mm^2$$

$$L = 10m$$

 $\rho_{20^{\circ}\text{C}} = 0.0178 \ \Omega mm^2/m$

$$R_{\textit{Cu20}^{\circ}\text{C}} = \frac{0.0178 \times 1.25 \times 10}{16} = 0.01391 \,\Omega$$

Fazendo a correcção para 30°C temos:

$$R_{Cu30^{\circ}C} = R_{Cu20^{\circ}C}[1 + \sigma_{20^{\circ}C}(T_2 - T_1)]$$
(3.4)

Onde: $\sigma_{20^{\circ}\text{C}}$ é o coeficiente de temperatura do cobre à 20°C [0.0040 $\frac{1}{\text{°C}}$]

$$R_{Cu30^{\circ}C} = 0.01391 \times [1 + 0.0040 \times (30 - 20)] = 0.014466\Omega$$

Resistividade da alma condutora $1.15 \Omega/\text{km}$ à 20°C .

$$R_{a30^{\circ}\text{C}} = 0.01 \times 1.15 \times [1 + 0.0040 \times (30 - 20)] = 0.01196\Omega$$

Logo a resistência total do cabo é

$$R_t = R_{Cu30^{\circ}C} + R_{a30^{\circ}C} = 0.014466 + 0.01196 = 0.02643\Omega$$

$$I_{CC} = \frac{U_o}{R_t}$$

$$I_{CC} = \frac{230V}{0.02643\Omega} = 8702.23A = 8.7kA$$

$$(3.5)$$

Com Isso o poder de corte do dispositivo de protecção deverá ter um poder de corte de (**Pdc**) 10kA.

O tempo de actuação do dispositivo de protecção não deverá ser superior que 5s.

$$\sqrt{t_a} = \frac{S}{I_{CC}} \times k \tag{3.6}$$

Onde: t_a é o tempo de actuação do dispositivo de protecção em [A]

 I_{CC} é a corrente de curto-circuito em [kA]

k é uma constante, cujo valor é: Para condutores com alma de cobre isolada a policloreto de vinilo; 115

S é a secção do cabo em $[mm^2]$

$$t_a = \left(\frac{S}{I_{CC}} \times k\right)^2 = \left(\frac{16}{8702.23} \times 115\right)^2 = 0.04471s$$

3.3.1.2 Cálculo de Queda de Tensão

Para o cálculo de queda de tensão será usada a expressão

$$u = b\left(\rho 1 \times \frac{L}{S} \times \cos \varphi + \lambda \times L \sin \varphi\right) \times I_b \tag{3.7}$$

Onde: u é a queda de tensão, expressa em volts;

b é um coeficiente igual a 1 para os circuitos trifásicos e a 2 para os monofásicos;

 ρ 1 é a resistividade dos condutores à temperatura em serviço normal, isto é, 1,25 vezes a resistividade a 20°C (0,0225 Ω .mm²/m para o cobre e 0,036 Ω .mm²/m para o alumínio);

L é o comprimento simples da canalização, expresso em metros;

S é a secção dos condutores, expressa em milímetros quadrados;

 $\cos \varphi$ é o factor de potência (na falta de elementos mais precisos, pode ser usado o valor $\sin \varphi = 0.8$ e, consequentemente, $\sin \varphi = 0.6$);

 λ é a reactância linear dos condutores (na falta de outras indicações pode ser usado o valor 0.08 m Ω /m)

 I_b é a corrente de serviço, expressa em amperes. Retirado em RTIEBT.

$$u = \left(0.0225 \times \frac{10}{16} \times 0.8 + 0.00008 \times 10 \times 0.6\right) \times 59.775A = 0.701V$$

$$\Delta u = 100 \times \frac{u}{U_0}$$

Onde: Δu é a queda de tensão relativa, expressa em percentagem;

 U_0 é a tensão entre fase e neutro, expressa em volts;

$$\Delta u = 100 \times \frac{0.701V}{230V} = 0.3\%$$

Como a queda de tensão é menor que 6%, estabelecida no QUADRO 52O pelas RTIEBT, então o condutor suportará aos esforços eléctricos que serão impostos.

(3.8)

3.3.1.3 Barramentos

Serão usados bloco de distribuição modular, que tenham uma corrente admissível superior a corrente admissível do condutor de entrada (Cobre de $16mm^2$ com uma corrente admissível de $I_Z = 76A$ à temperatura ambiente de $30^{o}C$).

$$I_{SB} > 1.15 \times I_Z \tag{3.9}$$

Onde: I_{SB} é a corrente de serviço do barramento [A]

$$I_{SR} > 1.15 \times 76 = 87.4A$$

Com isso, o bloco para barramento seleccionado é de referência 048 84, com uma corrente admissível de 100A e corrente de curto-circuito de 10kA. Em **Anexo 3 tabela A3-35.**

3.4.2 Portinhola

Será feita a selecção dos fusíveis que constarão no final do ramal de entrada (Portinhola), atendendo as questões de sobrecarga e curto-circuito.

Para o dimensionamento dos fusíveis de para a portinhola deverá este obedecer as seguintes condições:

$$I_{nf} \le 1.15 I_{ZC} \tag{3.10}$$

O fusível deve suportar até 15% da corrente admissível do cabo sem fundir.

E em caso de curto-circuito ele deverá fundir em um tempo não superior que 5s

$$I_{nf} \le 1.15 \times 72.6 = 83.49$$

Com isso, $I_n = 63A \text{ com } I_{nf} = 82A \text{ Anexo 3 tabela A3-36}$

Com a corrente nominal do fusível, e a corrente de curto-circuito calculado na alínea b) de 3.3.1.1 usa-se a curva do fusível encontrado para verificar se a corrente de curto-circuito quando percorrido pelo fusível não ultrapasse 5s sem que ele funde. A

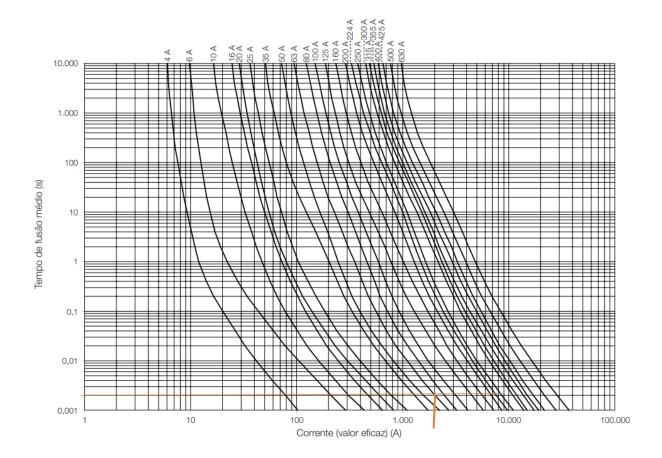


Figura 7: Fusíveis classe gL/gG - tipo NH contacto faca. Fonte: (WEG Catálogo)

Nota-se que o fusível escolhido cortará a falha em um tempo muito, pois este fusível, com corrente de curto-circuito de aproximadamente de 2kA funde em um tempo de 2ms.

3.4.3 Entrada para os quadros parciais.

Os cálculos foram feitos obedecendo os paços vistos em 3.3.1 e respeitando o método de referência adoptada em cada piso.com ajuda do *software* Excel e os resultados obtidos foram os que se apresentam nas tabelas seguintes:

Para Laboratório: Método de referência C

Tabela 3: Dimensionamento da canalização para Laboratório

			Laboratório				
	Dados			Dimension	amento		
	Sc (kVA)	13.8	Э	1 Condição	lb<=ln<:	=lzc	
	U (V)	400	arga	1 Coridição	19.94 < 25	5 < 46	
Carga	U0(v)	230	Sobrecarga				
	lb(A)	19.9422	Sob	2 Condição	12<=1.4	5lz	
	L	3	9,	2 Coridição	32.5 < 66.7		
	Iz (A)	46					
	S (mm2)	6			ta<5	3	
Cabo	1.45lz	66.7	Curto-circuito	Condição	Icc(A)	6052.63	
	K	115			ta(s)	0.013	
	Rtcu30	0.038					
	In	25	Ouede de		dU(%)<	5%	
Protecção	12	32.5	Queda de tensão	Condição	dU(%)	0.0793	
	Pdc (kVA)	10					

Fonte: Autor

• Para Rés-do-Chão: Método de referência B

Tabela 4: Dimensionamento da canalização para Rés-do-Chão

			Rés-do-Chão				
	Dados			Dimension	namento		
	Sc (kVA)	3.8	а	1 Condição	lb<=ln<	:=lz	
	U(V)	400	Sobrecarga	i Condição	5.491 < 20	0 < 28	
Carga	U0(v)	230	reca				
	lb(A)	5.491329	gop	2 Condição	12<=1.4	5lz	
	L	2	9,	2 Coridição	26 < 40.6		
	Iz (A)	28					
	S (mm2)	4			ta<5	S	
Cabo	1.45lz	40.6	Curto-circuito	Condição	Icc(A)	6052.63	
	K	115			ta(s)	0.005776	
	Rtcu30	0.038					
	In	20	0		dU(%)<	:5%	
Protecção	12	26	Queda de tensão	Condição	dU(%)	0.0217	
	Pdc (kVA)	10	15540				

Fonte: Autor

Para 1 Andar: Método de referência B

Tabela 5:Dimensionamento da canalização para 1 Andar

			1 Andar					
	Dados			Dimension	amento			
	Sc (kVA)	13.8	æ	1 Condição	lb<=ln<	=lz		
	U(V)	400	arg	1 Condição	19.942 < 2	5 < 41		
Carga	U0(v)	230	Sobrecarga					
	lb(A)	19.9422	gog	2 Condição	12<=1.4	5lz		
	L	4	3,	2 Condição	32.5 < 59.45			
	Iz (A)	41						
	S (mm2)	6			ta<5	5		
Cabo	1.45lz	59.45	Curto-circuito	Condição	Icc(A)	5494.94		
	K	115			ta(s) 0.01			
	Rtcu30	0.041857						
	In	25	0 - 1- 1-		dU(%)<	5%		
Protecção	12	32.5	Queda de tensão	Condição	dU(%)	0.1057		
	Pd (kVA)	6	.5540					

Fonte: Autor

Para 2 Andar: Método de referência B

Tabela 6: Dimensionamento da canalização para 2 andar

			2 Andar					
	Dados			Dimensio	onamento			
	Sc (kVA)	6.9	я	1 Condição	lb<=lr	n<=lz		
	U(V)	400	arge	1 Condição	9.971 <	25 < 41		
Carga	U0(v)	230	Sobrecarga					
	lb(A)	9.971	Sob	2 Condição	12<=1	.45lz		
	L	8	•,	2 Condição	32.5 < 59.45			
	Iz (A)	41						
	S (mm2)	6			ta<	5s		
Cabo	1.45lz	59.45	Curto-circuito	Condição	Icc(A)	4015.129473		
	K	115			ta(s)	0.0295		
	Rtcu30	0.057283						
	In	25	Ouada da		dU(%))<5%		
Protecção	12	32.5	Queda de tensão	Condição	dU(%)	0.1057		
	Pdc (kVA)	4.5						

Fonte: Autor

3.4.4 Sistema de aterramento

O sistema de aterramento a ser adoptado é do tipo malha de aterramento formada por 8 hastes cravadas no solo em forma de quadrado vazio, como está indicado na figura 5, e o regime de neutro a usar é o TN-S.

Pelo facto de não existência das características do solo, a tendência é de ter uma resistência de terra muito pequena que não ultrapasse 50ohms, com isso, prevê-se uma malha de aterramento de 8 hastes, para a redução das resistências equivalente do solo.

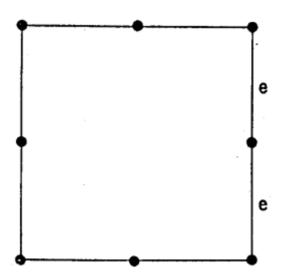


Figura 8:Modo do sistema de aterramento (quadro vazio) Fonte : (KINDERMANN & COMPAGNOLO, 1995, p. 78)

$$R_{eq} = KR_{1haste} (3.11)$$

Onde:

 R_{1haste} é Resistência eléctrica de uma haste cravada no solo;

K é o índice de redução do sistema de aterramento;

 R_{eq} é Resistência eléctrica equivalente do sistema de aterramento;

Os dados existentes para a determinação da resistência são:

$$d = 0.0159m L = 2m e = 2.5m$$

$$R_{1haste} = \frac{\rho a}{2\pi L} \ln\left(\frac{4L}{d}\right) (3.12)$$

Onde:

 ρa é Resistividade aparente do solo;

d é o diâmetro da haste de aterramento;

L é comprimento da haste de aterramento;

$$R_{1haste} = \frac{\rho a}{2\pi * 2} \ln \left(\frac{4 * 2}{0.0159} \right) = 0.495 \rho a$$

Atendendo o sistema de aterramento acima mencionado, K retirado em **A3 tabela A3.2-30** K=0.2, com isso temos

$$R_{eq} = 0.2 * 0.495 \rho a = 0.099 \rho a$$

3.4.5 Protecção Contra as Descargas Atmosféricas e Sobretensões

3.4.5.1 Protecção Contra Descargas Atmosféricas

Segundo (CHACHAIA, 2017) "Para obtenção de dados relativa ao nível ceráunico é necessário o uso de equipamento apropriado para registos de raios que caiem por ano.". Para a avaliação dos riscos associados, é um dos dados fundamental para a classificação do nível de protecção a ser aplicada à edificação. O projecto em causa, será considerado um edifício com classe de nível de protecção II, tendo em conta os riscos associados a perda de vida humana ou invalidez permanente, Perda de serviço público, Perda do património cultural, por ser um edifício recebendo público.

a) Localização do Dispositivo de captura

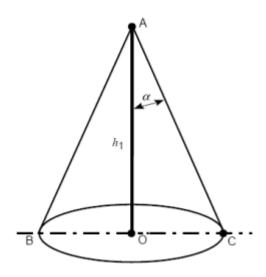


Figura 9: Volume protegido por uma haste de captura. Fonte: (NP EN62305-3)

Para a determinação da altura h1 da superfície do piso do teto até ao captador de raio, primeiro deve determinar-se o ângulo α que depende da altura do edifício e o nível de protecção considerado para o edifício, neste caso nível II.

Como o edifício não apresenta uma forma rectangular regular, ajustou-se as dimensões para obtenção de uma forma rectangular, que constitui como está indicada na Figura 9.

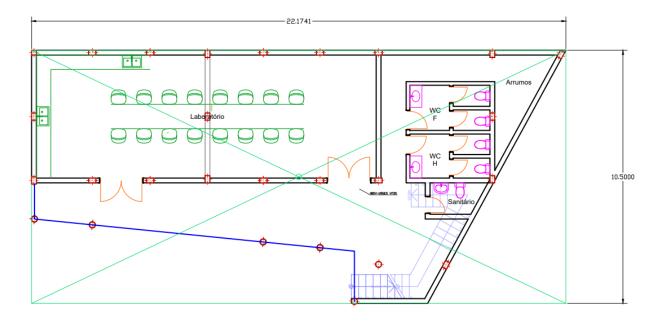


Figura 10: Planta baixa da edificação com ajustes de dimensões. Fonte: Autor

O edifício é composto por 3 pisos, onde cada tem uma altura de 3 metros, com isso, o edifício no total tem uma altura de 9m e com ajuda do gráfico do **Anexo 3 figura A3-32**, temos um $\alpha = 56^{\circ}$. Usando as regras de trigonometria, a altura h1 é determinada através da equação:

$$h_1 = \frac{R}{\tan \alpha} \tag{3.13}$$

Onde: $R - \acute{e}$ o raio da circunferência do cone.

A figura 10, tem-se um raio de R = 12.27m,

$$h_1 = \frac{12.27m}{\tan 56^{\circ}} = 8.23m$$

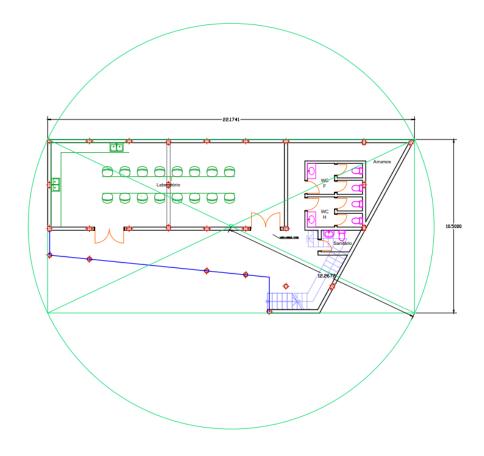


Figura 11: Regia do volume protegido, vista de cima. Fonte: Autor

b) Dimensionamento de DPS

Os dispositivos de protecção contra as sobretensões devem ter características que permitam o seu funcionamento apenas para tensões superiores à tensão mais elevada que possa existir na instalação eléctrica, em serviço normal.

Como a rede de alimentação é uma rede subterrânea 443.2.2 RTIEBT, com isso, a norma não obriga a colocação dos dispositivos de protecção contra sobretensão na entrada da instalação.

$$Uc \ge 1.1xUo \tag{3.14}$$

Onde: Uc é a tensão máxima em regime permanente do DPS;

Uo é a tensão entre fase e neutro.

$$1.1xUo = 1.1x230 = 253V$$

Com o **Anexo 3 tabela A3.2-34** foi seleccionado um DPS de Uc = 260V, In=20kA, Imax=40kA

3.5 Memorial Descritiva e Justificativa

O presente projecto de instalações eléctricas, relativo ao edifício de laboratório de pósgraduação, classificado como edifício recebendo publico, localizado na Faculdade de Engenharia da Universidade Eduardo Mondlane, prevê-se uma potência a instalar de 40.22kVA.

3.5.1 Entrada de Energia

A entrada de energia feita em Baixa Tensão, 400/230 - 50Hz, através de um ramal proveniente do PT de propriedade privada, sendo este da mesma instituição localizado no DEEL junto à edificação, numa distância de 15m do local onde será instalado a portinhola, o cabo de entrada será tipo VAV 4X16 0.6/1kV enterrado.

A portinhola será do tipo à embutir com uma caixa de coluna metálica, constituída por fusíveis de 63A de calibre e com um grande poder de corte. A Portinhola dará também a entrada de condutor de terra proveniente do sistema de aterramento. Depois da portinhola, se fará a ligação com cabo VV 4G16 0.6/1kV embutido em alvenaria em tubo VF. O cabo de terra de protecção sairá directamente do ligador amovível até o QE.

3.5.2 Distribuição de Energia

A distribuição de energia pelo interior do edifício para os quadros parciais do 1 e 2 Andar será efetuada através de cabos do tipo H05V-U5G6 em ductos tipo flexíveis VM embutidos, H05V-U5G4 embutidos em alvenaria em tubos VF para Rés-do-chão e para laboratório será feita por cabo XV 5G6 0.6/1kV instalado à vista de forma fixa por abraçadeiras.

3.5.3 Corte Geral de Energia

O quadro de entrada (QE) será dotado de disjuntor de corte geral, obedecendo o que foi estabelecido em 801.1.1.6 das RTIEBT. E será também dotado como disjuntores parciais os disjuntores de corte geral de cada andar e laboratório. Além disso, os respectivos andares serão dispostos por dispositivos de protecção da canalização do piso.

3.5.4 Utilização

3.5.4.1 Iluminação

A quantidade de luminária foi estabelecida em função da sua utilização e da sua ocupação. As luminárias serão fixadas em teto como foi 801.2.3.2 das RTIEBT e equipadas com duas lâmpadas Leds tipo tubular que juntas tenham um cumulativo de 3500lm. O comando da iluminação será local em todos os compartimentos, através de interruptores comandos ou comutadores, como o caso do laboratório, ou através de fotocélula e sensores de presença em locais de curta permanência iluminação dos corredores e escadas, estas serão efetuadas por distância.

A canalização para os circuitos de iluminação será feita com cabos H05V-U3G1.5 em tubos VF sendo o diâmetro indicada em função da quantidade de cabos lá inseridos de acordo foi indicado nas peças desenhadas.

Será prevista uma iluminação de segurança do tipo C, constituída por blocos autónomos de emergência, de acordo com a secção 801.2.3.2. As derivações que alimentem os blocos autónomos serão feitas a jusante do dispositivo de protecção e a montante do dispositivo de comando da iluminação normal do local ou do caminho de evacuação onde estiverem instalados os blocos autónomos, como foi prevista em 801.2.1.5.3.3.1 das RTIEBT.

3.5.4.2 Tomadas e força motriz

a) Tomada de Uso Geral

As tomadas a serem utilizadas serão de classe de protecção adequada ao local onde estão inseridas. Todas as tomadas a serem instaladas em áreas acessíveis ao público serão monofásicas do tipo Schuko, com corrente nominal não superior a 16 A.

A canalização para os circuitos de tomada de uso geral será feita com cabos H05V-U3G2.5 em tubos VF20 como foi indicado nas peças desenhadas e colocadas em caixas de aparelhagem fundas, dispostas a uma altura do piso de 30cm. No laboratório, a canalização será a vista com cabos H05VV-U3G2.5 fixados por abraçadeiras, as tomadas serão em estanque colocadas a uma altura de 1.3m do piso.

Estas tomadas terão um grau de protecção IP20 quando instaladas em locais sem riscos especiais, ou IP65-IK07 quando instaladas em ambientes severos, como zonas técnicas ou áreas expostas às intempéries.

A quantidade de tomadas a ser instalada por circuito, respeitando os limites regulamentares, ou seja, 8 pontos de utilização por circuito.

b) Tomadas de Uso Específico

Foram consideradas tomadas de uso específicos todas as que constituem a climatização, todos equipamentos de força motriz e equipamentos de aquecimento. Cada equipamento dispõe de um dispositivo de protecção calculado olhando a sua corrente de serviço.

As tomadas presentes em laboratório, serão colocadas a uma altura de 1.3m do piso, e serão de IP59 e IK04. A canalização será à vista, por condutores H05VV-U3G2.5 fixados em paredes por abraçadeiras.

3.5.5 Especificações técnicas dos Materiais

Os materiais serão seleccionados atendendo as condições do local.

Tabela 7:Índices de Protecção em função a classificação do local.

Locais	Classificação	IP	IK
Laboratório	AA4+AB4+AE2+AF3 +AG2+BC2+XX1	IP56	IK04
Sala de aula, Gabinete	AA4+AB4+BC2+XX1	IP20	IK07
Sanitário, WC's	AA4+AB4+BC2+ XX1	IP56	IK04
Arrumos	AE3+AA4+AB4+BC2+XX1	IP6X	IK00
Área técnica	AA7+AB7+BC2+ XX1	IP65	IK07

Fonte: Autor

3.5.5.1 Portinhola

A portinhola será de Baixa tensão trifásica (PBT) equipada a base de neutro seccionável e 3 ISF1-00, com caixa para BTN trifásica de potência máxima até 41,4kVA (60A/fase) ou para BTE até 69kVA (100A/fase). As portinholas serão encastradas em elementos da construção, de modo que a porta do invólucro fique à face da parede e a zona onde são alojadas tenha um acabamento perfeito. Serão feitas por metais e cujo índice de protecção IP65 e IK10, com dimensões interiores 320x400x200mm (LxAxP) cuja classe de isolamento deverá ser de Classe II, garantindo o duplo isolamento das partes.

Os fusíveis a serem utilizados serão do tipo NH00, com corrente nominal de 63A. A entrada dos cabos será feita na parte inferior e a saída na parte superior, como está indicada na Figura 5, onde os pontos h e b representam as entradas (h – para condutor de terra, e b – entrada das fases e neutro) e a parte superior a saída. Os cabos de entrada deverão ser conectados na parte superior dos fusíveis e os cabos de saída na parte inferior. Dessa forma, garantindo que durante a manobra não ocorra a ligação sob a influência da gravidade.

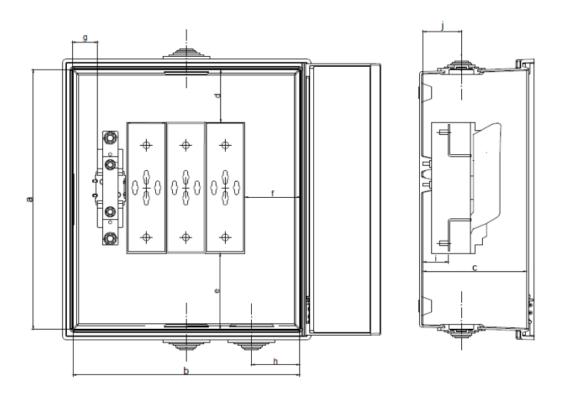


Figura 5: Portinhola PBT Tri – Disposição e dimensões Fonte: (E-REDES - Distribuição de Eletricidade, 2024)

3.5.5.2 Quadro Eléctrico

O quadro eléctrico de entrada deverá ter espaço para acomodar 24 módulos de disjuntores monopolar, com as especificações de modelo CX QUADRO (2x12) 24md P90 INT (475x375x90). Este quadro contará com duas fileiras de 12 módulos cada e será do tipo embutido, com classe de isolamento Classe II. Apresentará uma IP65 e IK10. O mesmo acontece com os quadros do 1 e 2 Andar, deverão acomodar 24 módulos cada quadro. O Quadro Parcial do Laboratório será Semi-Saliênte, com IP65 e IK10, terá que abrigar 24 módulos de disjuntores monopolar.

3.5.5.3 Tubagem e Abraçadeiras

As canalizações de iluminação em todos compartimentos serão em tubos VF16 e os para a canalização dos respectivos comandos o diâmetro da tubagem varia em tendo em conta a quantidade de condutores nele percorrido. Para canalização de tomadas será em VF20 exceptuando no laboratório, visto que o método de referência escolhido é do tipo C (canalização fixa à vista). Para este local, os condutores serão fixados em paredes com abraçadeiras.

3.5.5.4 Terra de Protecção

Para terra de protecção, usar-se-á 8 eléctrodos de vareta de aço revestido de cobre com uma espessura 50micrometros, 2m de comprimento e com 15mm de diâmetro, interligados entre si em forma de um quadrado, serão enterrados no solo verticalmente, a distância de separação dos eléctrodos será de 2.5m. A conexão entre os eléctrodos será feita por abraçadeiras especializadas para aterramento em cabo de cobre nú de secção de 35mm² que serão enterradas a uma profundidade e 1m no mínimo.

Os eléctrodos de terra deverão ser cravados de forma que não exista uma fragilidade com a terra, como nos contactos, deve ser feito um bom aperto entre o eléctrodo, abraçadeira e o cabo para garantir um bom escoamento das correntes de fuga à terra.

A entrada para o QE, será feita por cabo de cobre isolado de secção de 16mm² em ducto, desde a caixa amovível.

3.5.5.5 Sistema de protecção contra descargas atmosféricas (SPDA)

Sistema externo de protecção contra o raio será formado por para-raios tipo hastes Franklin, com semiângulo de protecção de 55°, colocado em cobertura sobre mastro de aço galvanizado a quente, de 1-1/2" de diâmetro e 8 m de comprimento do seu mastro. Incluindo suportes, peças especiais, condutor de cobre nu de secção de 50mm2 segundo recomendações da norma NP EN 62305. O eléctrodo de terra a mesma especificação do indicado na terra de protecção, cravado como mostrado no desenho do anexo 2.23.

CAPÍTULO IV-ESTIMATIVA DE CUSTO

Tabela 8: Estimativa de custo do projecto

	Estimativa de custo Categoria Preco													
#	Categoria de emprego	Material	Especificações Técnicas	un	QNT	Preço Unitário [MZN]	Preço Total [MZN]							
1			VAV 4G16 0.6/1kV	m	15	766.38	1,495.70							
2			XV 5G6 0.6/1kV	m	15	329.00	4,935.00							
3			H05VV-U3G2.5	m	200	92.93	8,586.00							
4		soo	H05VV-U4G2.5	m	10	119.00	1,190.00							
5		Cabos	H05VV-U3G4	m	10	151.21	1,512.10							
6			H05V-U3G1.5	m	600	50.00	30,000.00							
7			H05V-U3G2.5	m	600	60.00	36,000.00							
8			H07V-U1G16	m	15	205.00	3,075.00							
0			Caixa de derivação estanque											
9	ção		100x100x56mm IP54	un	7	277.78	1,944.46							
10	Canalização	as	Boquilha	un	24	66.67	1,600.08							
11	Sana	Caixas	Boquilha de redução	un	24	66.67	1,600.08							
12	O	J	Caixas de derivação 100x100x40	un	50	24.88	1,244.00							
13			Caixa de aparelhagem funda	un	135	11.73	1,583.55							
14	•	<u></u>	Braçadeira para cabo de 2.5mm2	un	200	11.66	2,332.00							
15		ade s	Braçadeira para cabo de 4mm2	un	100	15.00	1,500.00							
16		Braçadeira s	Braçadeira para cabo de 6mm2	un	50	18.00	900.00							
17			VF16	m	600	11.35	6,810.00							
18		so	VF20	m	600	14.15	8,490.00							
19		Ductos	VF25	m	100	38.99	3,899.00							
20			VF32	m	100	48.50	4,850.00							
21		Fusível	NH 00 63A gG 500V e par de placa	un	3	115.00	345.00							
22			Disjuntor Dx 6000 3P+N 25A-C 6KA	un	3	3,428.20	10,284.60							
23			Disjuntor Dx 6000 3P+N 20A-C 6kA	un	1	3,329.06	3,329.06							
24			Disjuntor Dx 6000 1P 10A-C 4.5KA	un	12	142.24	1,706.88							
25			Disjuntor Dx 6000 1P 16A-C 4.5KA	un	16	142.24	2,275.84							
26			Disjuntor Dx 6000 2P 16A-C 4.5KA	un	2	850.34	1,700.68							
27			Disjuntor Dx 6000 3P 16A-C 4.5KA	un	1	1,375.00	1,375.00							
28		₽	Disjuntor Dx 6000 1P 20A-C 4.5KA	un	1	1,480.00	1,480.00							
29	0	Disjuntor	IDR RX ³ 10000 20A 30mA 4P	un	4	3,711.21	14,844.84							
30	PROTEÇÃO	Disj	IDR RX ³ 10000 16A 30mA 2P	un	3	2,980.00	8,940.00							
31	OTE		IDR RX ³ 10000 10A 30mA 2P	un	6	1,745.00	10,470.00							
	PR		Disjuntor Dx 6000 3P+N 63A-C 10KA											
32			Legand	un	1	3,866.00	3,866.00							
			Disjuntor Dx 6000 3P+N 40A-C 6KA											
33			Legand		4	3,580.20	14,320.80							
34			DPS 3P+N 16A-C 260V 20KA CII	un	1	4,099.00	4,099.00							
35			Eléctrodo de terra cobre 5/8" 2m	un	9	621.00	5,589.00							
36		Aterramento	Braçadeiras de conexão	un	12	95.00	1,140.00							
37			Cabo nu de Cobre de 35mm2	un	100	350.00	35,000.00							
							,							

Tabela 8.1: Estimativa de custo do projecto

Г			Pára-raios tipo hastes Franklin, com ponta							
			,							
20			múltipla formada por peça central, haste							
38			principal e quatro laterais, com semiângulo							
			de protecção de 55°, fabricado em aço			04040.05	04 040 05			
			inoxidável de 16 mm de diâmetro	un	1	21348.95	21,348.95			
			Mastro de aço galvanizado a quente, de 1							
39		ajo	1/2" de diâmetro e 8 m de comprimento,							
		Para raio	para fixação a parede ou estrutura.	un	1	24465.16	24,465.16			
40		Ъ	VD 40	m	2	64.00	128.00			
41			Cabo nu de Cobre de 50mm2	m	26	550.00	14,300.00			
42			Tripé de ancoragem para mastro, com							
			placa base de 500x500x10 mm	un	1	44126.51	44,126.51			
43			suportes de fixação em U para embeber							
			em parede	un	11	967.77	10,645.47			
44			Abraçadeira Condutor/Mastro TMC-SS	un	5	221.03	1,105.15			
45			Tomada de Embeber do Tipo ScHUKO							
			2P+T de 16A	un	116	235.00	27,260.00			
46			Suno Legrand	un	116	43.10	4,999.60			
47		_	Tomada 2P+T Schuko - Estanque - IP55							
77		upto	16 A - 250 V	un	16	320.43	5,126.88			
48		iterri	Tomada 3P+T Sistema Plexo- Estanque -							
70	e Inte		IP55 20 A - 400 V	un	1	590.00	590.00			
49		Tomadas	Tomadas e Interruptor	ıadas	Fotocêtula 16 A	un	1	409.45	409.45	
50				Sensor de Presença de Tecto ~ 240V/10A	un	9	1200	1,800.00		
51				Ĕ	⊢	Interruptor simples enbutir	un	16	187.00	2,992.00
52								Suno Legrand	un	19
53	gem		Interruptor Duplo embutir	un	1	283.00	283.00			
54	elhaç		Comutador de escada Duplo Saliente	un	2	388.89	777.78			
55	Aparelhagem		Phillips LED CR250B 40W	un	186	165.00	30,690.00			
56	∢		Armadura 1.2m 2X36W	un	93	1,219.00	113,367.00			
		Luminárias	Lâmpada de Emergência autónoma IP45							
57			IK10	un	20	6,985.00	30,690.00			
58			Pictograma Legrand	un	20	250.00	23,250.00			
			Bloco de distribuição ref 048 84+048 46,							
59		Barramento	100A 5 x 2,5 a 102 x 10 a 25 Legrand IP56							
			e IK07	un	4	2,890.00	11,560.00			
60			Portinhola	un	1	3,245.00	3,245.00			
		0 00	CX QUADRO (2x12) 24md P90 INT							
61		Quadro eléctrico	(475x375x90)	un	3	4,360.00	13,080.00			
62		o le	CX DCP QUADRO (2x8) 16md P90 INT	un	1	5,980.00	5,980.00			
63	Ma	terial	· ,	<u> </u>	1		666,352.52			
64		sporte		un	0.1	655,552.52	66,635.25			
65		de-obra		un	0.3	655,552.52	199,905.76			
					BTOTAL		932,893.53			
					IVA	17%	158,591.90			
					TOTAL		1,091,485.43			
<u> </u>			Fonte: Autor				,,			

Fonte: Autor

CAPÍTULO V-CONSIDERAÇÕES FINAIS

5.1 Conclusão

O projecto de instalação eléctrica para o edifício de três pisos do Laboratório de Pós-Graduação da Faculdade de Engenharia da UEM foi desenvolvido, alcançando todos os objectivos propostos. A realização deste projecto é um passo crucial para assegurar que o novo edifício atenda às necessidades de segurança, a fiabilidade e funcionalidade, promovendo um ambiente propício para a pesquisa e o ensino avançados.

A descrição detalhada do edifício, levando em consideração a classificação do ambiente e dos compartimentos conforme sua utilização, permitiu adaptar o projecto às características específicas de cada área, garantindo uma instalação adequada e segura, optada na selecção de Material. Além disso, o estudo do cálculo luminotécnico para todos os compartimentos assegura que cada espaço tenha a iluminação necessária para realizar actividades académicas e de pesquisa com conforto e eficiência. O dimensionamento da canalização e dos dispositivos de protecção foi realizado atendendo as normas locais aplicáveis, assegurando que todos os circuitos eléctricos estejam devidamente protegidos contra sobrecargas e curtos-circuitos. A elaboração dos esquemas eléctricos para tomadas, iluminação normal e de segurança facilita a compreensão e execução do projecto, além de permitir futuras manutenções e expansões de forma organizada e eficiente.

Finalmente, a estimativa do custo relactivo ao projecto oferece uma visão clara dos recursos financeiros necessários, permitindo um planeamento orçamentário e a alocação adequada dos recursos, com um cumulativo de 1,091,485.43 MZN.

5.2 Recomendações

Durante a elaboração do projecto constatou-se um défice de informação para o dimensionamento do SPDA, no que concerne ao nível ceráunico, pois este dado é fundamental para a obtenção do nível de protecção associado à edificação, com isso, recomenda-se um estudo futuro na elaboração de um SPDA.

Recomenda-se um estudo detalhado e completo para todos os compartimentos da eficiência energética, para o melhor e baixo consumo de energia.

REFERÊNCIA BIBLIOGRÁFICA

- [1] CERTIEL. 2010 Ficha técnica 31.
- [2] CHACHAIA, F. H. 2017 Estudo Das Descargas Atmosféricas Associadas A Morte De Pessoas E Destruição De Infraestruturas Na Região Da África Austral. Caso De Estudo: Moçambique.
- [3] DECRETO-LEI N.º 740/74, DE 26 DE DEZEMBRO
- [4] E-REDES Distribuição de Electricidade, S. 2024 *Material Para Derivações E Entradas BT Portinholas De Baixa Tensão*.
- [5] GUIA PRÁTICO NP EN 62305 Protecção Contra Descargas Atmosféricas.
- [6] HENRIQUES, M. L. 2014 Efeitos Da Iluminância Em Trabalho Realizado e Secretária.
- [7] KINDERMANN, G., & COMPAGNOLO, J. M. 1995 *Aterramento Eléctrico* (3 edição ed.), Porto Alegre: Sagra-D.C. Luzzatto.
- [8] SRAM. 2000 Manual Luminotécnico Prático.
- [9] REIS, S. M. 2016 Protecção de pessoas e bens em instalações alimentadas por grupos de segurança/socorro.
- [10] SAICE, A. C. 2023 Estudo para o melhoramento da qualidade de energia eléctrica na Faculdade de Engenharia da Universidade Eduardo Mondlane.
- [11] SANTOS, H. 2009 Protecção de Pessoas e Esquemas de Ligação à Terra.
- [12] WEG Catálogo. Fusíveis aR e gL/gG Tipo NH Contacto Faca e Flush End.
- [13] "RTIEBT" Regras Técnicas das Instalações Eléctricas de Baixa Tensão, (Edição de 2006)

Outras Referências

- [1] JÚNIOR, G. 2018 Dimensionamento da Instalação Eléctrica de um Edifício Residencial de Três Pisos e Avaliação do Uso de Energias Alternativas para a Redução dos Custos de Operação Da Instalação e Garantia de Continuidade.
- [2] MATIAS, J. 2009 Tecnologia da Electricidade.
- [3] MARTINS, J. 2004 Apontamentos para Projecto de Instalações Eléctricas I.

Tabela A1- 1: Previsão de carga método de divisões principais

			Previsão	de Carga Com a	uxílio das <i>i</i>	Áreas				Total
	Piso	Compartimento	Área (m2)	PIL(W/m2)	Pil(W)	Ptug(W/m2)	Ptug(W)	Pc (W/m2)	Pc(W)	
1		Laboratório	71.91		719.1		1438.2		d	
2		WC Masculino	6.23							
3		WC Feminino	6.06							
4	Rés-do-Chão	Sanitário	2.66	10		20		80		
5		Arrumos	6.26							
6		Hall	9.16							
7		Corredor	45.76							
9		Gabinete 1	17.34		173.4		346.8		1387.2	
10		Gabinete 2 Gabinete 3	17.34		173.4		346.8		1387.2	
11			22.78		227.8		455.6		1822.4	22160.8
12	1 Andar	Sala de Reuniões	30.45	10	304.5		609		2436	22100.0
13		Arrumos 1	6.26							
14		Corredor	45.75							
16		Sanitário	2.66							
17		Sala 1	35.7		357		714		2856	
18		Sala 2	35.19		351.9		703.8		2815.2	
19	2 Andar	Gabinete 4	23.05	10	230.5	20	461	80	1844	
20	Z Alidai	Arrumos 2	6.26	10		20		00		
21		Corredor	45.75							
23		Sanitário	2.66							
	total				2537.6		5075.2		14548	

Tabela A1- 2: Cálculo luminotécnico Rés-do-chão

		Sim	bologia				Rés-de	o-chão)				
	Compartimento			Laboratório	WC Masculino	WC Feminino	Sanit	ário	Arrumos	На	I	Corre	dor 0
	Largura	L	m	14.7	1.825	1.8733	1.3	1.3	2.6168	1.102	1.045	2.325	1.5
	Comprimento	С	m	5.1	3.325	3.325	0.711	1.69	4.7867	4.52	4.198	3.8	13.27
nte	Área	Α	m2	74.97	6.068125	6.2287225	2.663	765	6.26291828	9.3669	075	45.7	763
ıbie	Volume	V	m3	209.916	16.99075	17.440423	7.458	542	17.53617118	26.227	'341	128.1	1364
Am	Tipo de iluminação	-	-	Directa	Directa	Directa	Dire	cta	Directa	Dire	cta	Dire	ecta
ဓ	Altura útil	Hm	m	2.8	2.8	2.8	2.8	3	2.8	2.8	2.8	2.	.8
Descrição do Ambiente	Índice do local	K		1.352272727	0.42081311	0.42793678	0.22306941		0.3021215	0.30789	9135	0.4912	18171
scri	Factor de Ref. Parede	ρр	%	70	70	70	70		50	70		7	0
De	Factor de Ref. Tecto	ρt	%	30	30	30	30		30	30	ı	3	0
	Factor de Ref. Solo	ρs	%	10	10	10	10)	10	10	ı	1	0
	Factor de depreciação	Fm		0.73	0.73	0.73	0.7	3	0.73	0.7	0.73		73
	Nível Recomendado	Er	Lux	500	150	150	150	0	100	150		15	50
Características	Temperatura de luz	Т	K	4000	4000	4000	400	00	4000	4000		40	00
da Iluminação	Índice de Reprodução de cor	IRC		80	80	80	80		80	80		8	0
40	Tipo de Lâmpada			LED CR250B	LED CR250B	LED CR250B	LEI CR25		LED CR250B	LED CF	250B	LED C	R250B
Lâmpadas e Luminárias	Fluxo luminoso de lâmpada	ØL	lm	3500	3500	3500	350	00	3500	350	0	35	00
niná	Factor de utilização	Fu	%	0.51	0.32	0.32	0.3	2	0.32	0.3	2	0.3	32
Lun	Nr Armaduras	-	-	16	1	1	1		1	2		5	5
ο O	Iluminância de Serviço	Es	Lux	521.8525766	252.837009	246.318017	575.96	9192	244.9731111	327.588	7106	167.62	95889
ada	Potência por armadura	Pa	W	40	40	40	40)	40	40		4	0
ğ E	Potência total	Pt	W	640	40	40	40)	40	80		20	00
Ľ L	Carga Relativa	δ	W/m2 p/ 100lux	1.635854342	2.60714286	2.60714286	2.6071	4286	2.607142857	2.60714	2857	2.6071	42857
	Total de lâmpadas usadas 27				,				,				

Tabela A1- 3: Cálculo luminotécnico 1 Andar

		Si	mbologia				1	Andar				
	Compartimento			Gabinete 01	Gabinete 02	Gabinete 03	Sala de Reuniões	Hall	Arrumos	Sanitário	Corre	edor 1
	Largura	L	m	3.4	3.4	4.47	3.045 5.1	1.8549	2.6168	1.3 1.3	2.325	1.5
	Comprimento	С	m	5.1	5.1	5.1	2.43 4.52	2.23	4.7867	0.711 1.7	3.8	13
nte	Área	Α	m2	17.34	17.34	22.797	30.451593	4.136427	6.262918	2.663765	45	763
Descrição do Ambiente	Volume	V	m3	48.552	48.552	63.8316	85.2644604	11.581996	17.53617	7.458542	128	1364
Am	Tipo de iluminação	-	-	Directa	Directa	Directa	Directa	Directa	Directa	Directa	Dir	ecta
op -	Altura útil	Hm	m	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2	2.8
Ção	Índice do local	K		0.7285714	0.7285714	0.8507613	0.72047015	0.3616479	0.302122	0.22306941	0.49	12182
Scri	Factor de Ref. Parede	ρр	%	70	70	70	70	70	70	70	-	70
De	Factor de Ref. Tecto		%	30	30	30	30	30	30	30		30
	Factor de Ref. Solo		%	10	10	10	10	10	10	10	,	10
	Factor de depreciação	Fm		0.73	0.73	0.73	3 0.73 0.73		0.73	0.73	0.73 0.73	
Características	Nível Recomendado	Er	Lux	500	500	500			100	150		50
da Iluminação	Temperatura de luz	Т	K	4000	4000	4000	4000	4000	4000	4000	_	000
	Índice de Rep. de cor	IRC		80	80	80	80	80	80	80	3	30
φ	Tipo de Lâmpada			LED CR250B	LED CR250B	LED CR250B	LED CR250B	LED CR250B	LED CR250B	LED CR250B	LED C	R250B
Lâmpadas e Luminárias	Fluxo luminoso de lâmpada	ØL	lm	3500	3500	3500	3500	3500	3500	3500	35	500
i iii	Factor de utilização	Fu	%	0.39	0.39	0.44	0.39	0.32	0.32	0.32	0	.32
e	Nr Armaduras	-	-	6	6	6	8	1	1	1		5
Sas	Iluminância de Serviço	Es	Lux	647.01142	647.01142	555.22807	491.23552	370.91107	244.9731	575.969192	167.	62959
рас	Potência por armadura	Pa	W	40	40	40	40	40	40	40	4	10
-âπ	Potência total	Pt	W	240	240	240	320	40	40	40	2	00
	Carga Relativa	δ	W/m2 p/ 100lux	2.1391941	2.1391941	1.8961039	2.13919414	2.6071429	2.607143	2.60714286	2.60	71429
	Total de lâmpadas usadas		34									

Tabela A1- 4: Cálculo luminotécnico 2 Andar

			Simbologia			2	Andar				
	Compartimento			Sala 01	Sala 02	Gabinete 04	Arrumos	Sani	tário	Corre	edor 0
	Largura	L	М	5.1	5.1	4.524	2.6168	1.3	1.3	2.3247	1.5
	Comprimento	С	М	7	6.9	5.1	4.7867	0.7107	1.6937	3.8	13.2695
te.	Área	Α	m2	35.7	35.19	23.0724	6.26291828	2.66	3765	45.	.763
bien	Volume	V	m3	99.96	98.532	64.60272	17.53617118	7.45	8542	128.	.1364
Am	Tipo de iluminação	-	-	Directa	Directa	Directa	Directa	Directa		Dire	ecta
о р С	Altura útil	Hm	m	2.8	2.8	2.8	2.8	2	2.8		1.8
تاريق	Índice do local	K		1.053719008	1.047321429	0.8562077	0.3021215	0.2230	69413	0.4912	218171
esci	Factor de Ref. Parede	ρр	%	70	70	70	50	7	0	7	70
Δ	Factor de Ref. Tecto	ρt	%	30	30	30	30	3	0	3	30
	Factor de Ref. Solo	ρs	%	10	10	10	10	1	0	10	
	Factor de depreciação	Fm		0.73	0.73	0.73	0.73	0.73		0.73	
Características	Nível Recomendado	Er	Lux	500	500	500	100	15	50	1:	50
da Iluminação	Temperatura de luz	Т	К	4000	4000	4000	4000	40	00	3.8 13.26 45.763 128.1364 Directa 2.8 0.49121817 70 30 10)00
Co Áre Vol Tip Altr Índ Fac	Índice de Reprodução de cor	IRC		80	80	80	80	8	0	8	30
	Tipo de Lâmpada			LED CR250B	LED CR250B	LED CR250B	LED CR250B	LED C	R250B	LED C	R250B
ırias	Fluxo luminoso da luminária	ØL	lm	3500	3500	3500	3500	35	00	35	500
niné é	Factor de utilização	Fu	%	0.48	0.48	0.44	0.32	0.	32	0.	.32
Lur	Nr Armaduras	-	-	8	8	6.00	1		1	5	.0
as e	Iluminância de Serviço	Es	Lux	515.7131346	523.187238	548.600676	244.9731111	575.96	91922	167.62	295889
pad <u>i</u>	Potência por armadura	Pa	W	40	40	40	40	4	0	4	10
-â _.	Potência total	Pt	W	320	320	240	40	4	0	2	00
-	Carga Relativa	W/m2 p/ δ 100lux		1.738095238	1.738095238	1.738095238 1.8961039 2.607142857 2.		2.6071	07142857 4.370342853		342853
	Total de lâmpadas usadas		29								

Anexo2: Distribuição de Cargas e Peças Desenhadas

Tabela A2.1- 5: Quadro de Distribuição Parcial Rés-do-Chão

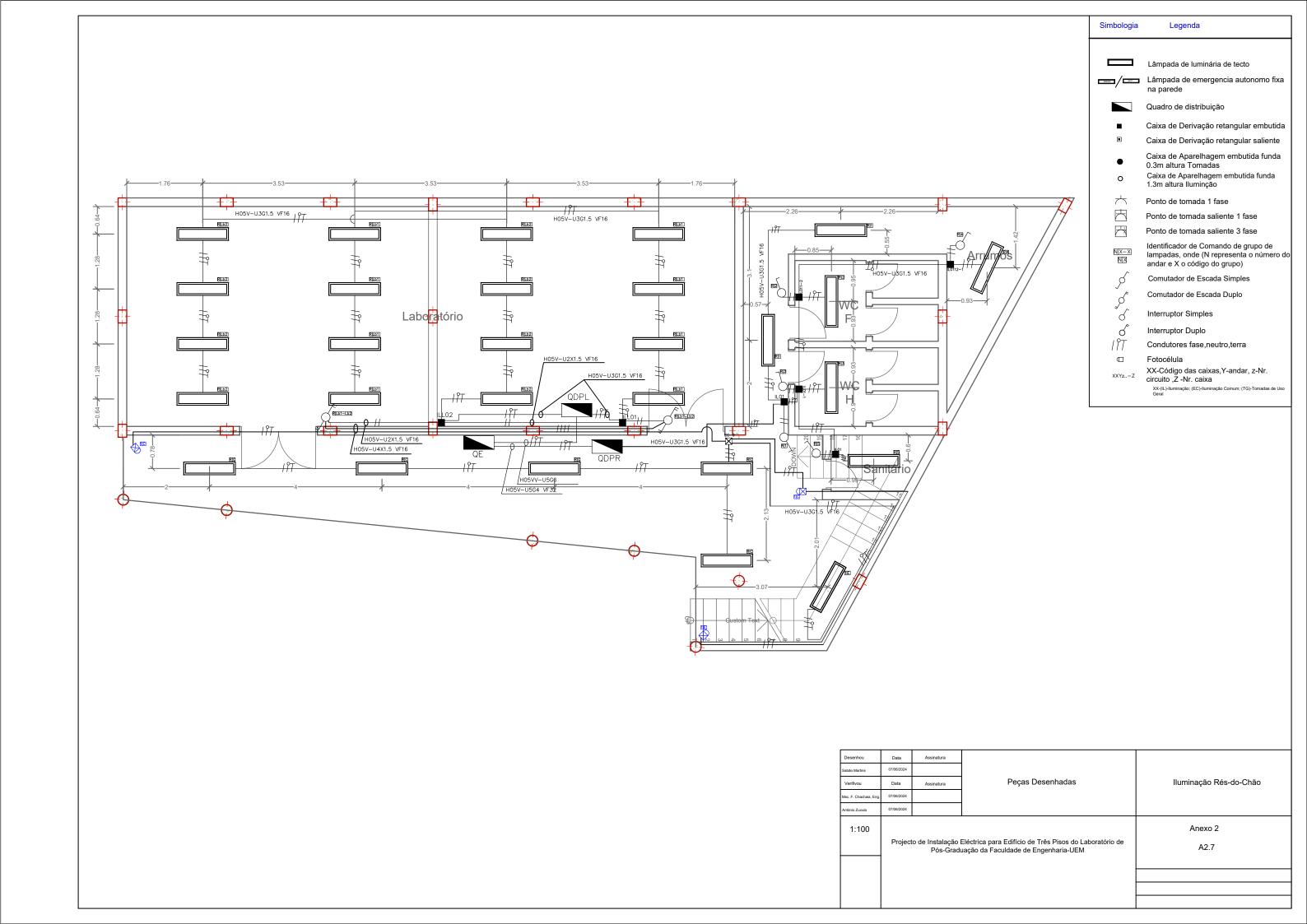
						Q	UADRO	DE DISTR	IBUÇÃO PA	ARCIAL RÉ	S-DO-CHÃ	O E SERV	ıços (COMUNS							
QDPR			Р	Pi	cosø			Potênc	Potência por fase(VA)					Su"	Sc		Dis.	S.Cabo		dU (%)	In
Circuito	Código	Qtd	(W)	(W)	τοςψ	Si(VA)	Fu	R	S	T	Su'(VA)	U(V)	Fs	(kVA)	(kVA)	IB(A)	Max.(m)	(mm2)	Cabo	uo (78)	(A)
Iluminação	IL01	6	40	240	1	240	1		240		240	230				1.0435	30	1.5	H05V-U3G1.5	0.32796	10
TUG's	TG01	5	100	500	0.8	625	1			625	625	230				2.7174	30	2.5	H05V-U3G2.5	0.5138	16
IL. Escada Corredor	ILEC	18	40	720	1	720	1	720			720	230	0.75	3.087	3.8	3.1304	30	1.5	H05V-U3G1.5	0.98388	10
Bomba de incêndio	B.INCÊNDIO	1	1200	1200	0.8	1500	0.75	375	375	375	1125	230	0.73	3.007	3.0	6.5217	10	2.5	H05V-U3G2.5	0.41104	16
Bomba de Água	B.AGUA	2	750	1500	0.8	1875	0.75	468.86	468.86	468.86	1406.58	230				8.1522	10	2.5	H05V-U3G2.5	0.5138	16
TOTAL	_			4160		4960		1563.86	1083.86	1468.9	4116.58	400				5.4913	2	4	H05V-U5G4	0.02497	20

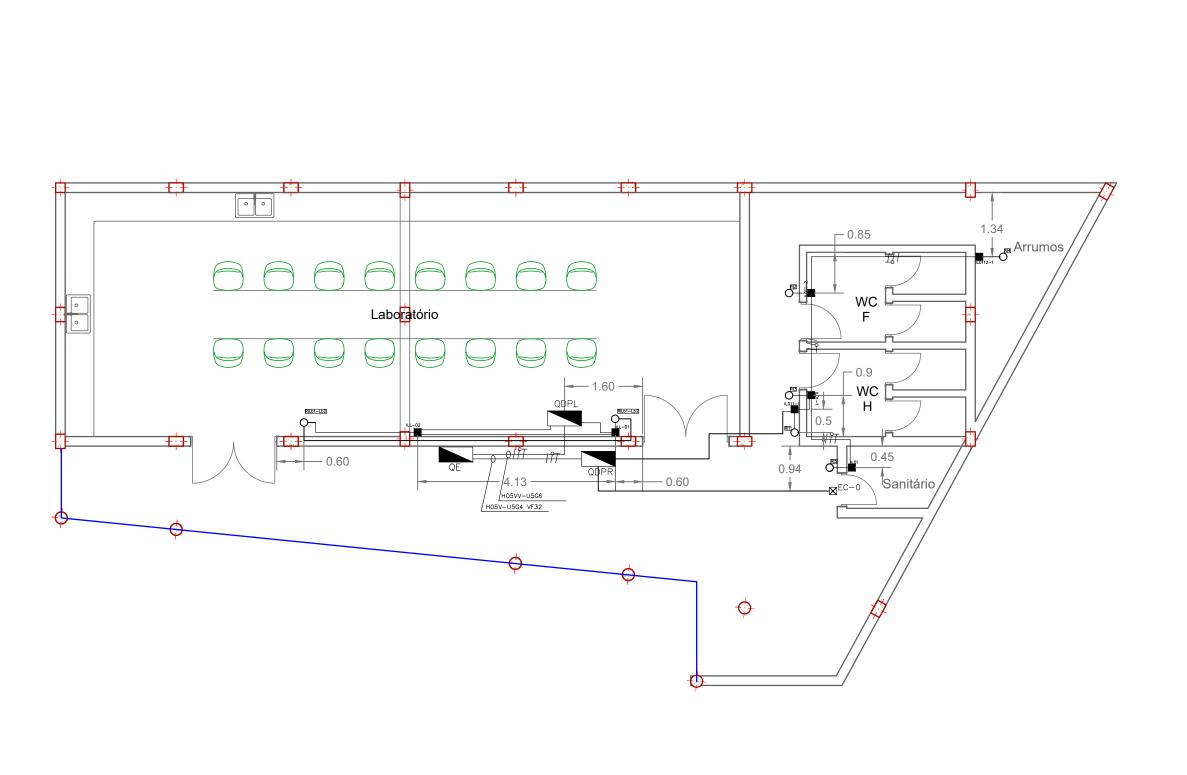
Tabela A2.2- 5: Quadro de Distribuição Parcial 1 Andar

	QUADRO DE DISTRIBUIÇÃO PARCIAL 1 ANDAR																				
QD1 Circuito	Código	Qtd	P(W)	Pi(W)	cosφ	Si (VA)	Fu	Potênci R	a por fa	ase (VA)	S::'(\/A)	U (V)	Fs	Su"	Sc" (kVA)	IB(A)	Dis. Max.(m)	S.Cabo (mm2)	Cabo	dU (%)	In (A)
Circuito								ĸ		ı	Su'(VA)		ГЪ	(kVA)	(KVA)		, ,	•		1 -	(A)
	IL11	12	40	480	1	480	1		480		480	230				2.087	30	1.5	H05V-U3G1.5	0.656	10
Iluminação	IL12	7	40	280	1	280	1	280			280	230				1.2174	30	1.5	H05V-U3G1.5	0.383	10
liaminação	IL13	10	40	400	1	400	1			400	400	230				1.7391	30	1.5	H05V-U3G1.5	0.547	10
	EMERG 1	9	10	90	1	90	1		90		90	230				0.3913	30	1.5	H05V-U3G2.5	0.123	10
	TG11	8	100	800	0.8	1000	1			1000	1000	230				4.3478	30	2.5	H05V-U3G2.5	0.822	16
Tomadas de	TG12	6	100	600	0.8	750	1		600		600	230	0.75	7.9969	13.8	2.6087	30	2.5	H05V-U3G2.5	0.493	16
uso Geral	TG13	8	100	800	0.8	1000	1	1000			1000	230	0.73	7.9909	13.0	4.3478	30	2.5	H05V-U3G2.5	0.822	16
	TG14	8	100	800	0.8	1000	1	1000			1000	230				4.3478	30	2.5	H05V-U3G2.5	0.822	16
	Climatização 1	1	1200	1200	0.8	1500	0.75			1125	1125	230				4.8913	16	2.5	H05V-U3G2.5	0.493	16
Tomada de Uso	Climatização 2	1	1200	1200	0.8	1500	0.75			1125	1125	230				4.8913	6	2.5	H05V-U3G2.5	0.185	16
Específico	Climatização 3	1	1800	1800	0.8	2250	0.75	1687.5			1687.5	230				7.337	5	2.5	H05V-U3G2.5	0.231	16
·	Climatização 4	1	2000	2000	0.8	2500	0.75		1875		1875	230				8.1522	12	2.5	H05V-U3G2.5	0.617	16
Total				10450		12750		3967.5	3045	3650	10662.5	400				19.942	4	6	H05V-U5G6	0.106	25

Tabela A2.3- 5: Quadro de Distribuição Parcial 2 Andar

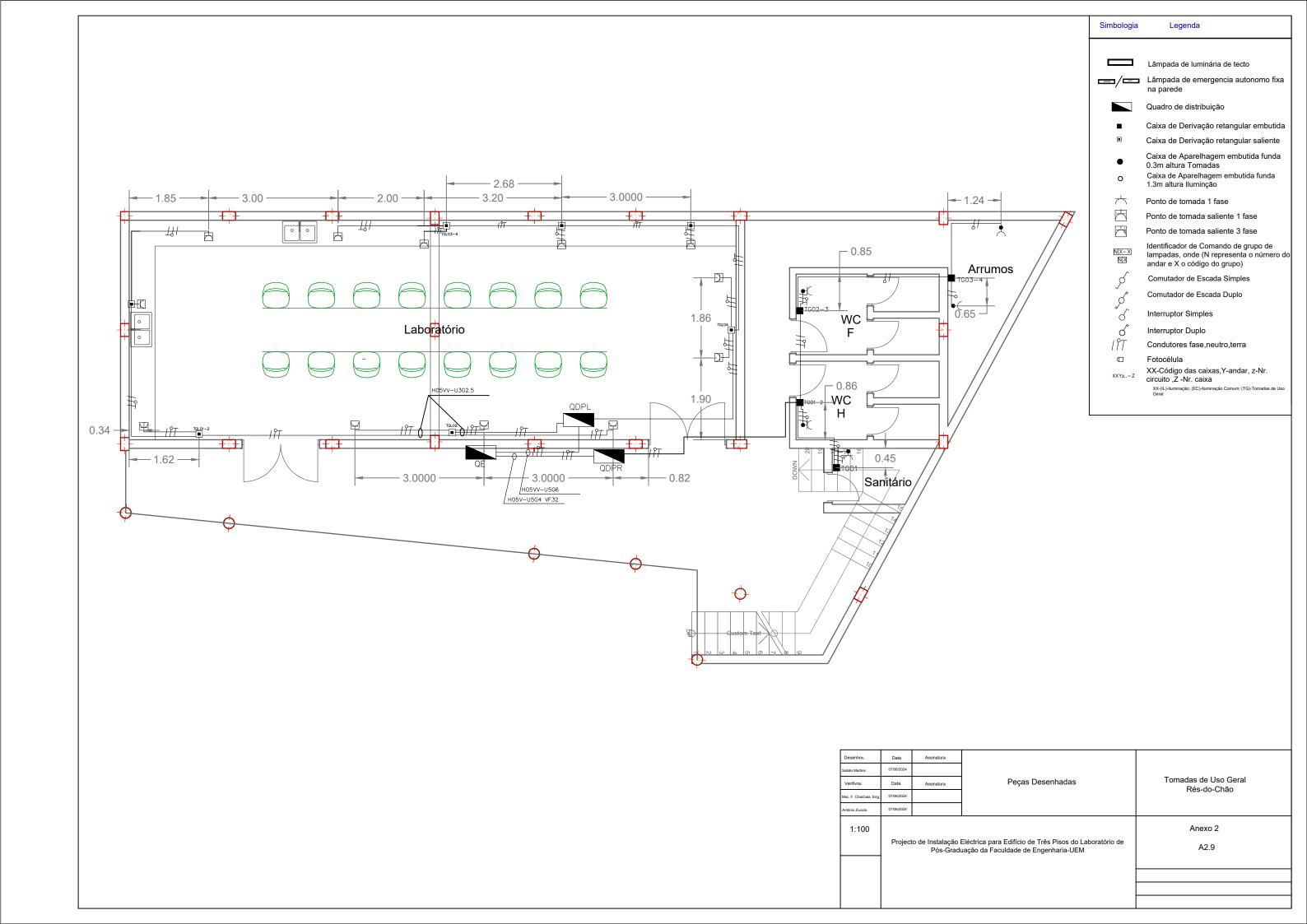
	QUADRO DE DISTRIBUIÇÃO PARCIAL DE 2 ANDAR																				
QD1	- Código	Qtd	P(W)	Pi(W)	0000	Si(VA)	Fu	Potênc	ia por fas	se (VA)		U (V)		Su"	Sc"	IB (A)	Dis.	S.Cabo		dU	In
Circuito	Codigo	Qiu	P(VV)	FI(VV)	cosφ	SI(VA)	Fu	R	S	T	Su'(VA)	U (V)	Fs	(kVA)	(kVA)	1B (A)	Max.(m)	(mm2)	Cabo	(%)	(A)
	IL21	8	40	320	1	320	1	320			320	230				1.3913	30	1.5	H05V-U3G1.5	0.4373	10
lluminação	IL22	8	40	320	1	320	1		320		320	230				1.3913	30	1.5	H05V-U3G1.5	0.4373	10
liuminação	IL23	6	40	240	1	240	1			240	240	230				1.04348	30	1.5	H05V-U3G1.5	0.328	10
	EMERG 2	7	10	70	1	70	1	70			70	230				0.30435	30	1.5	H05V-U3G1.5	0.0957	10
	TG21	7	100	700	0.8	875	1	875			875	230				3.80435	30	2.5	H05V-U3G2.5	0.7193	16
Tomadas de	TG22	8	100	800	0.8	1000	1		1000		1000	230	0.75	6.8063	6.9	4.34783	30	2.5	H05V-U3G2.5	0.8221	16
uso Geral	TG23	8	100	800	0.8	1000	1			1000	1000	230				4.34783	30	2.5	H05V-U3G2.5	0.8221	16
	TG24	6	100	600	0.8	750	1			750	750	230				3.26087	30	2.5	H05V-U3G2.5	0.6166	16
Tamada da Has	Climatização S1	1	1800	1800	0.8	2250	0.75		1687.5		1687.5	230				7.33696	6	2.5	H05V-U3G2.5	0.2775	16
Tomada de Uso Específico	Climatização S2	1	1800	1800	0.8	2250	0.75	1687.5			1687.5	230				7.33696	6	2.5	H05V-U3G2.5	0.2775	16
	Climatização G4	1	1200	1200	0.8	1500	0.75			1125	1125	230				4.8913	6	2.5	H05V-U3G2.5	0.185	16
Total				8650		10575		2952.5	3007.5	3115	9075	400				9.9711	8	6	H05V-U3G6	0.1057	20

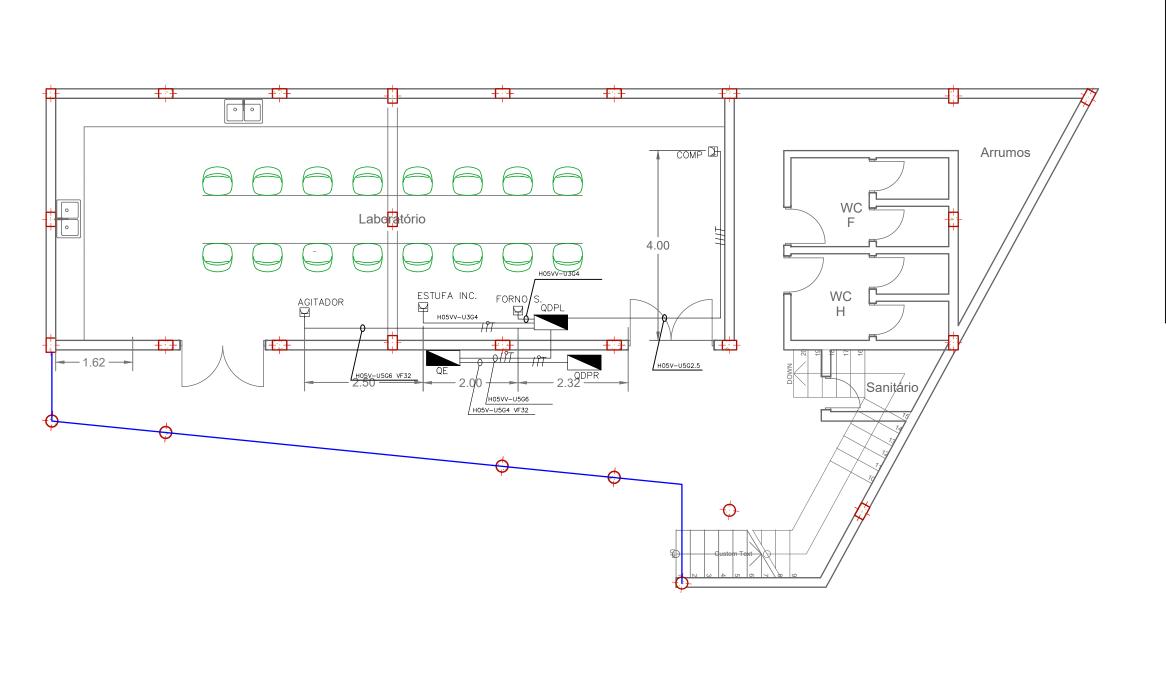

Anexo2: Distribuição de Cargas e Peças Desenhadas


Tabela A2.1- 6: Quadro de Distribuição Parcial Laboratório

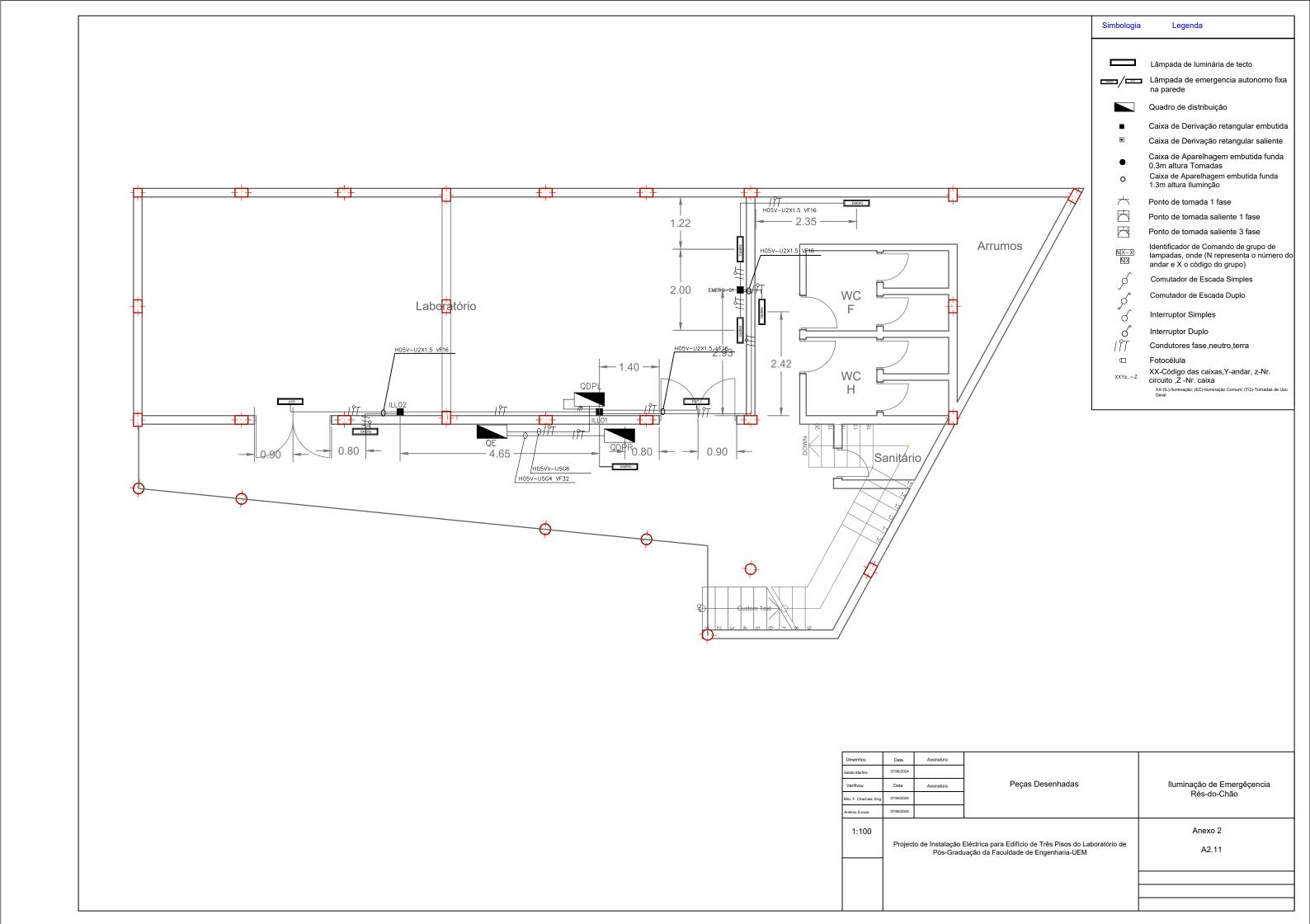
								QUADRO	DE DISTE	RIBUIÇÃO P	ARCIAL DO	LABOR	ATÓR	IO							
QDPL	Código	Qtd	P (W)	Pi (W)	0000	Si (VA)	Fu	Potên	cia por fas	se (VA)	Su' (VA)	U (V)	Fs	Su"	Sc"	IB (A)	Dis.	S.Cabo	Cabo	411 (0/)	In (A)
Utilização	Coaigo	Qiu	F (VV)	PI (VV)	cosφ	SI (VA)	гu	R	S	T	Su (VA)	U (V)	F 9	(kVA)	(kVA)	IB (A)	Max.(m)	(mm2)	Cabo	dU (%)	In (A)
	ILL01	8	40	320	1	320	1			320	320	230				1.391304	30	1.5	H05V-U3G1.5	0.4373	10
Iluminação	ILL02	8	40	320	1	320	1			320	320	230				1.391304	30	1.5	H05V-U3G1.5	0.4373	10
	EMERG 0	6	10	60	1	60	1			60	60	230				0.26087	30	1.5	H05V-U3G1.5	0.082	10
TUG's	TGL01	6	150	900	0.8	1125	1			1125	1125	230				4.891304	30	2.5	H05VV-U3G2.5	0.9248	16
1003	TGL02	6	150	900	0.8	1125	1			1125	1125	230	0.8	9.1125	13.8	4.891304	30	2.5	H05VV-U3G2.5	0.9248	16
Aquecimento	Estufa incubadora	1	4000	4000	1	4000	1		4000		4000	230	0.0	9.1123	13.0	17.3913	3	4	H05VV-U3G4	0.2063	20
Aquecimento	Forno de Secagem	1	2800	2800	1	2800	1	2800			2800	230				12.17391	1	4	H05VV-U3G4	0.0481	20
Força Motriz	Compressor	1	1500	1500	0.8	1875	0.75	468.75	468.75	468.75	1406.25	380				4.934211	8	4	H05VV-U5G4	0.0781	16
i orça Motriz	Agitador	1	250	250	0.8	312.5	0.75			234.375	234.375	230				1.358696	5	2.5	H05VV-U3G2.5	0.0428	16
				11050		11937.5		3268.75	4468.75	3653.125	11390.63	400				19.9422	3	6	XV 5G6 0.6/1kV	0.0793	25

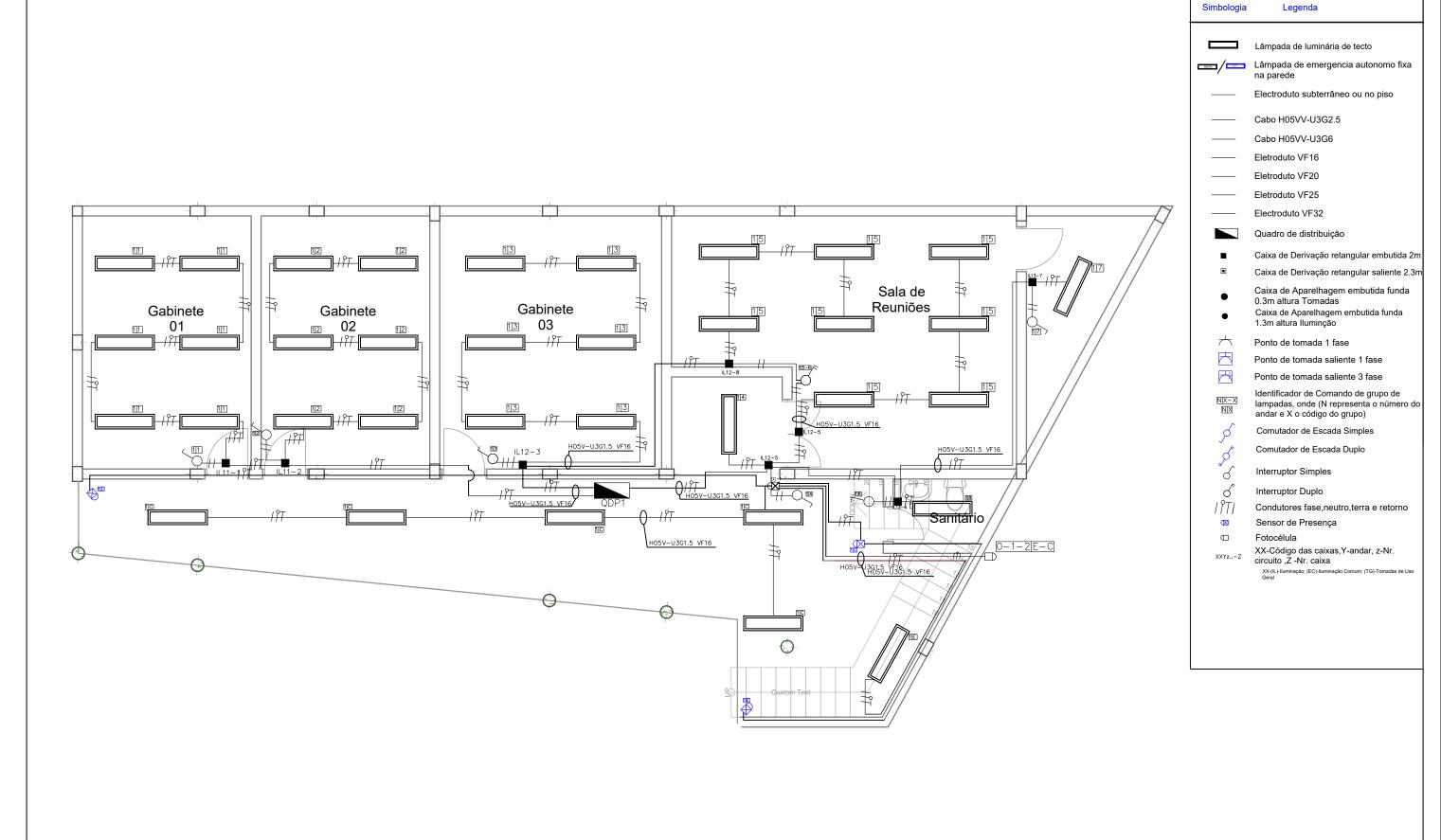
Tabela A2.2- 6: Quadro Geral de Distribuição

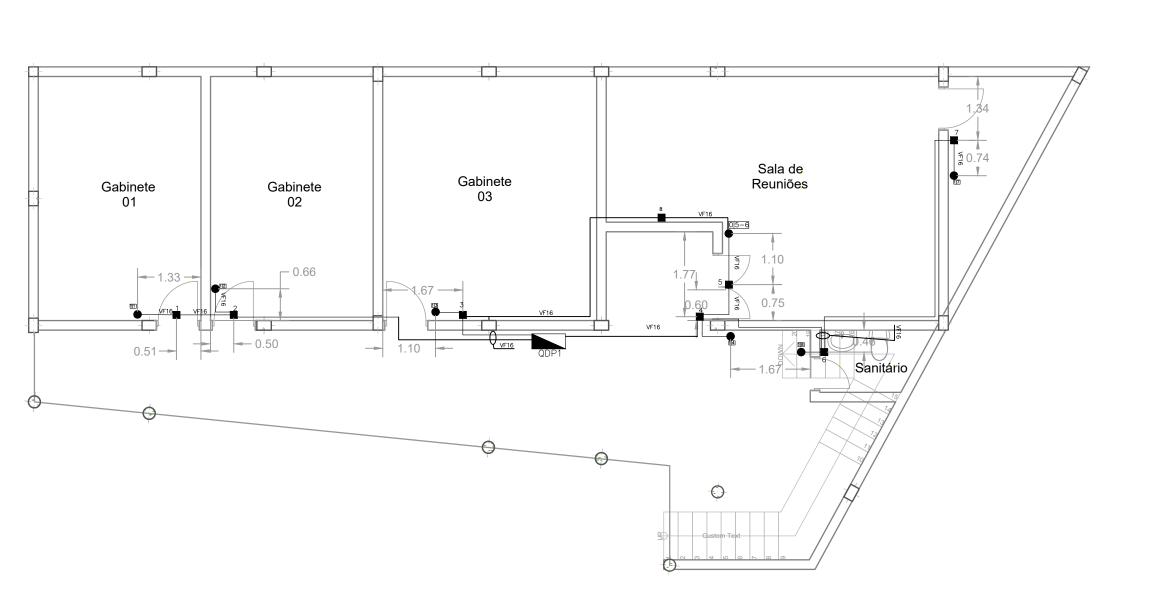

	QUADRO DE ENTRADA																					
				Р				Potêr	cia por fa	ase (VA)		Sc"		Su'''		Sc		Dis.	S.Cabo		dU(%)	
QE	Utilização	Circuito	Qtd	(W)	Pi (W)	cos	Si(VA)	R	S	Т	U (V)	(kVA)	Fs	(kVA)	Fe	(kVA)	IB (A)	Max.(m)	(mm2)	Cabo	uO(70)	In (A)
Laboratório	QDPL				11050		11937.5	3268.8	4468.8	3653.13	400	13.8					19.942	3	6	XV 5G6 0.6/1kV	0.078	25
1 Andar	QDP1				10450		12750	3967.5	3045	3650	400	13.8					19.942	4	6	H05V-U5G6	0.104	25
2 Andar	QDP2				8650		10575	2952.5	3007.5	3115	400	6.9	0.9	34.47	1.2	41.364	9.9711	8	6	H05V-U5G6	0.104	25
Rés-do-chão	QDPR				4160		4960	1563.9	1083.9	1468.86	400	3.8					5.4913	2	4	H05V-U5G4	0.022	20
TOTAL		•			34310		40222.5	11753	11605	11887	400	38.3					59.775	10	16	VAV 4X16 0.6/1kV	0.293	63



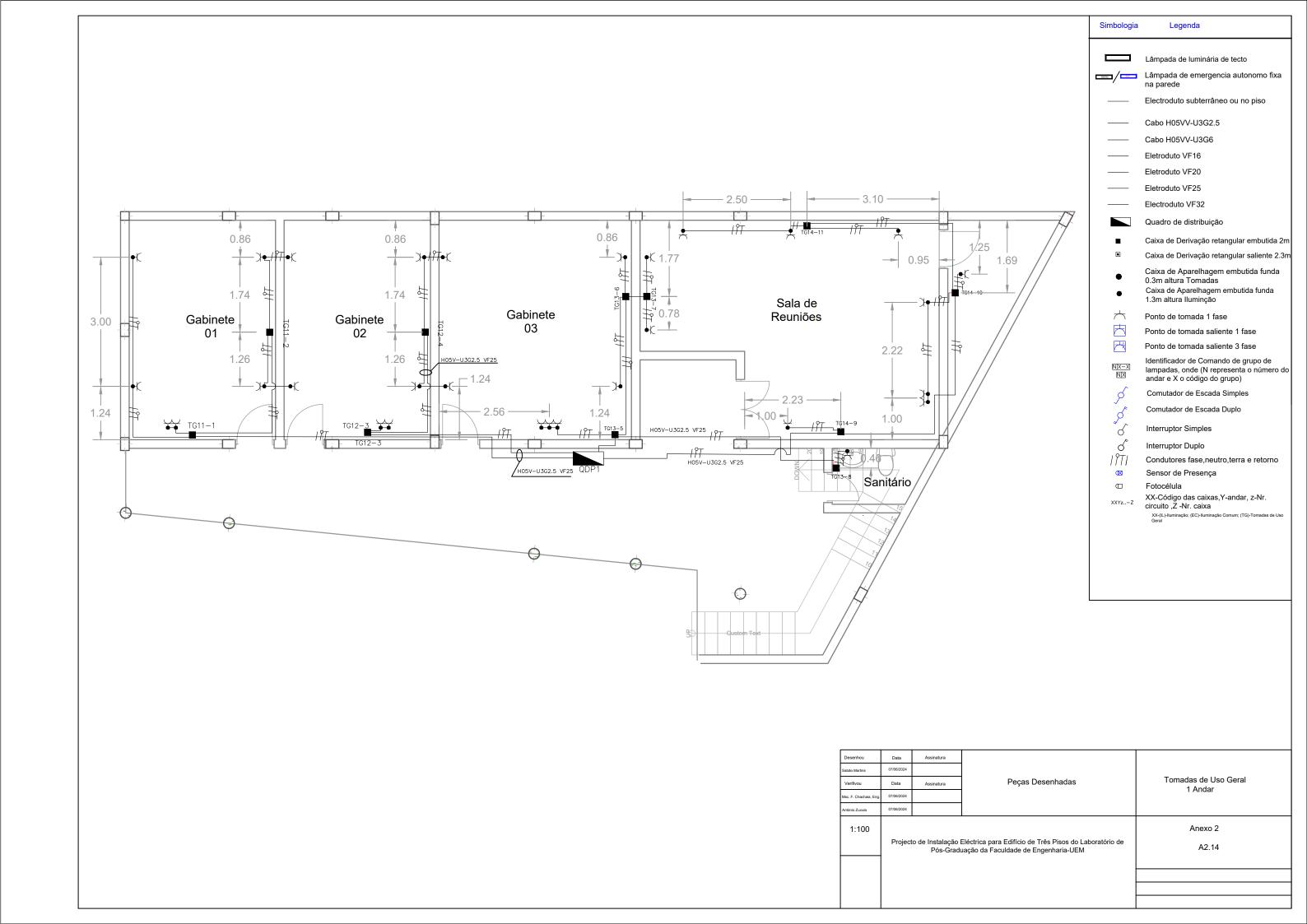
Simbologia Legenda Lâmpada de luminária de tecto Lâmpada de emergencia autonomo fixa Quadro de distribuição Caixa de Derivação retangular embutida Caixa de Derivação retangular saliente Caixa de Aparelhagem embutida funda 0.3m altura Tomadas Caixa de Aparelhagem embutida funda 1.3m altura Iluminção Ponto de tomada 1 fase Ponto de tomada saliente 1 fase Ponto de tomada saliente 3 fase Identificador de Comando de grupo de NX-X NX lampadas, onde (N representa o número do andar e X o código do grupo) Comutador de Escada Simples Comutador de Escada Duplo Interruptor Simples Interruptor Duplo 8 Condutores fase,neutro,terra Fotocélula XX-Código das caixas,Y-andar, z-Nr. circuito ,Z -Nr. caixa

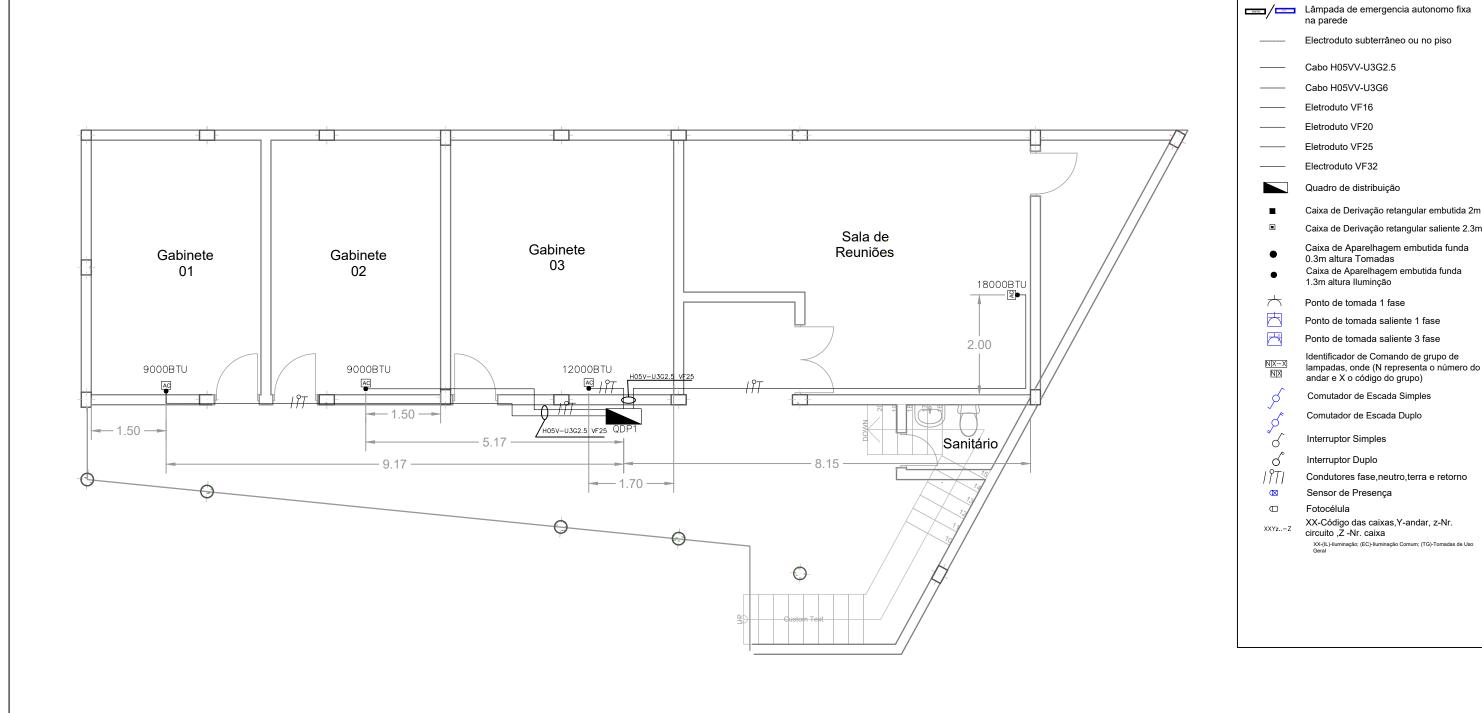

nhou	Data	Assinatura						
Martins	07/06/2024			Cota de Caixa de aparelhagem				
vou	Data	Assinatura	Peças Desenhadas	Iluminação				
Chachala, Eng.	07/06/2024			Rés-do-Chão				
Zucula	07/06/2024							
:100	Projec		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	Anexo 2 A2.8				




Simbologia Legenda Lâmpada de luminária de tecto Lâmpada de emergencia autonomo fixa Quadro de distribuição Caixa de Derivação retangular embutida Caixa de Derivação retangular saliente Caixa de Aparelhagem embutida funda 0.3m altura Tomadas Caixa de Aparelhagem embutida funda 1.3m altura Iluminção Ponto de tomada 1 fase Ponto de tomada saliente 1 fase Ponto de tomada saliente 3 fase Identificador de Comando de grupo de NX-X NX lampadas, onde (N representa o número do andar e X o código do grupo) Comutador de Escada Simples Comutador de Escada Duplo Interruptor Simples Interruptor Duplo S Condutores fase,neutro,terra Fotocélula XX-Código das caixas,Y-andar, z-Nr. circuito ,Z -Nr. caixa

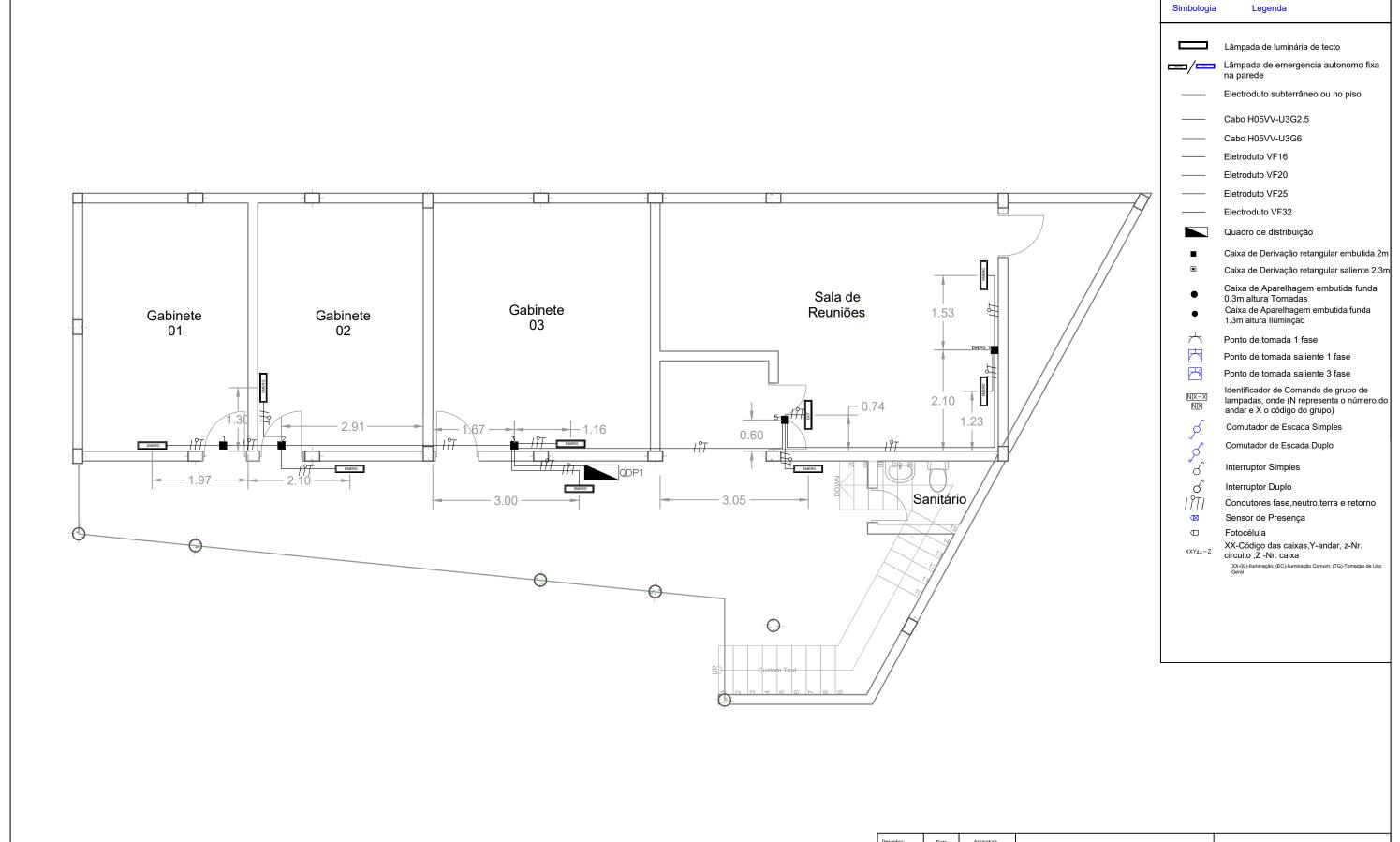
senhou	Data	Assinatura		
o Martins	07/06/2024			
ifivou	Data	Assinatura	Peças Desenhadas	Tomadas de Uso Específico
F. Chachaia, Eng.	07/06/2024			Rés-do-Chão
io Zucula	07/06/2024			
1:100	Project	to de Instalação I	Eléctrica para Edifício de Três Pisos do Laboratório de	Anexo 2
	riojeci		uação da Faculdade de Engenharia-UEM	A2.10



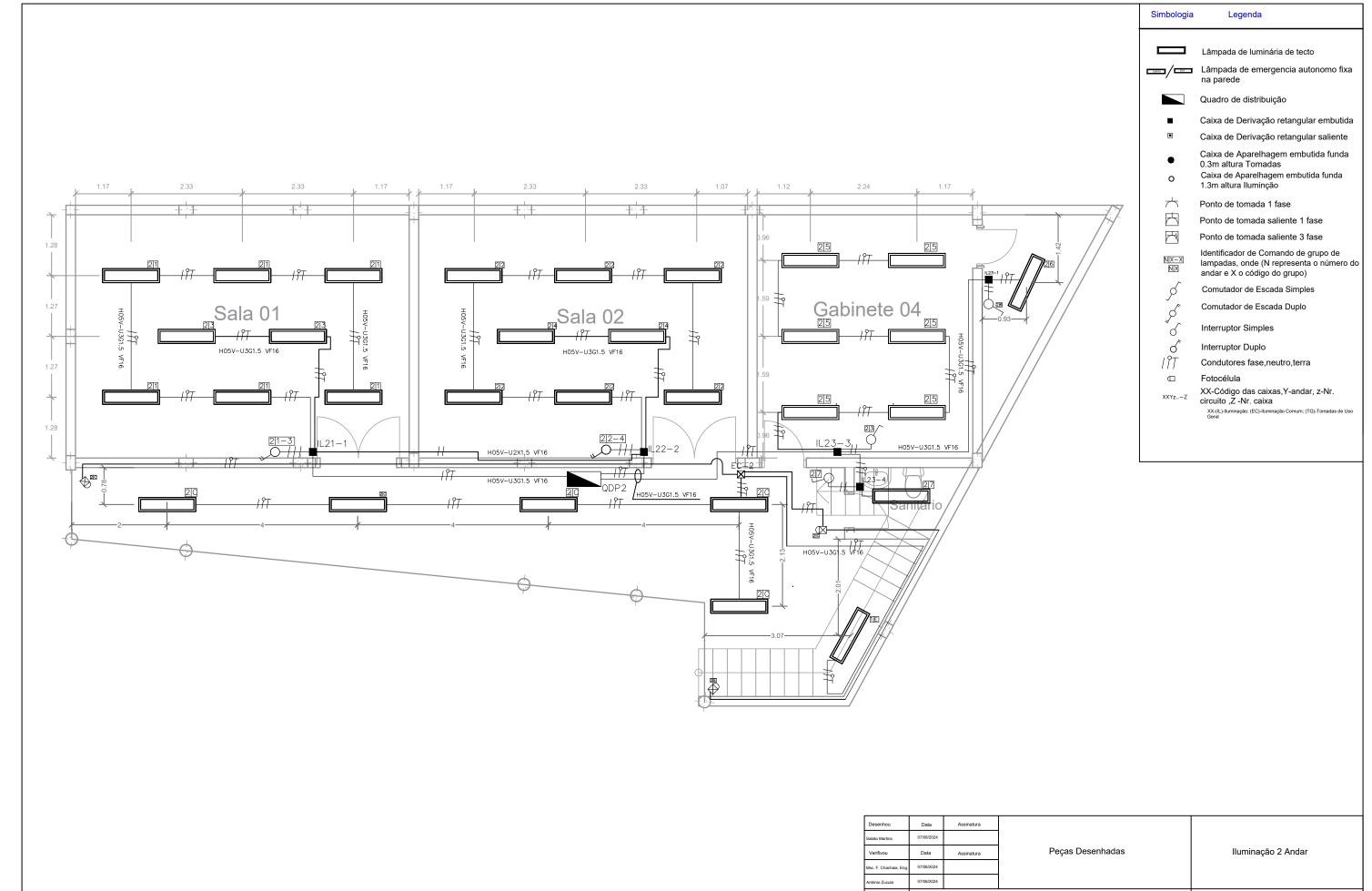

Desenhou	Data	Assinatura		
ebão Martins	07/06/2024			
/erifivou	Data	Assinatura	Peças Desenhadas	Iluminação 1 Andar
sc. F. Chachala, Eng.	07/06/2024			
ntónio Zucula	07/06/2024			
1:100	Projec		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	Anexo 2 A2.12

Simbologia Legenda Lâmpada de luminária de tecto Lâmpada de emergencia autonomo fixa na parede Electroduto subterrâneo ou no piso Cabo H05VV-U3G2.5 Cabo H05VV-U3G6 Eletroduto VF16 Eletroduto VF20 Eletroduto VF25 Electroduto VF32 Quadro de distribuição Caixa de Derivação retangular embutida 2m Caixa de Derivação retangular saliente 2.3m Caixa de Aparelhagem embutida funda 0.3m altura Tomadas Caixa de Aparelhagem embutida funda 1.3m altura Iluminção Ponto de tomada 1 fase Ponto de tomada saliente 1 fase Ponto de tomada saliente 3 fase Identificador de Comando de grupo de lampadas, onde (N representa o número do andar e X o código do grupo) Comutador de Escada Simples Comutador de Escada Duplo *****6 Interruptor Simples 8 Interruptor Duplo ΙĨΤΙ Condutores fase,neutro,terra e retorno ൃ Sensor de Presença Fotocélula XX-Código das caixas,Y-andar, z-Nr. circuito ,Z -Nr. caixa XX-(IL)-Iluminação; (EC)-Iluminação Comum; (TG Geral

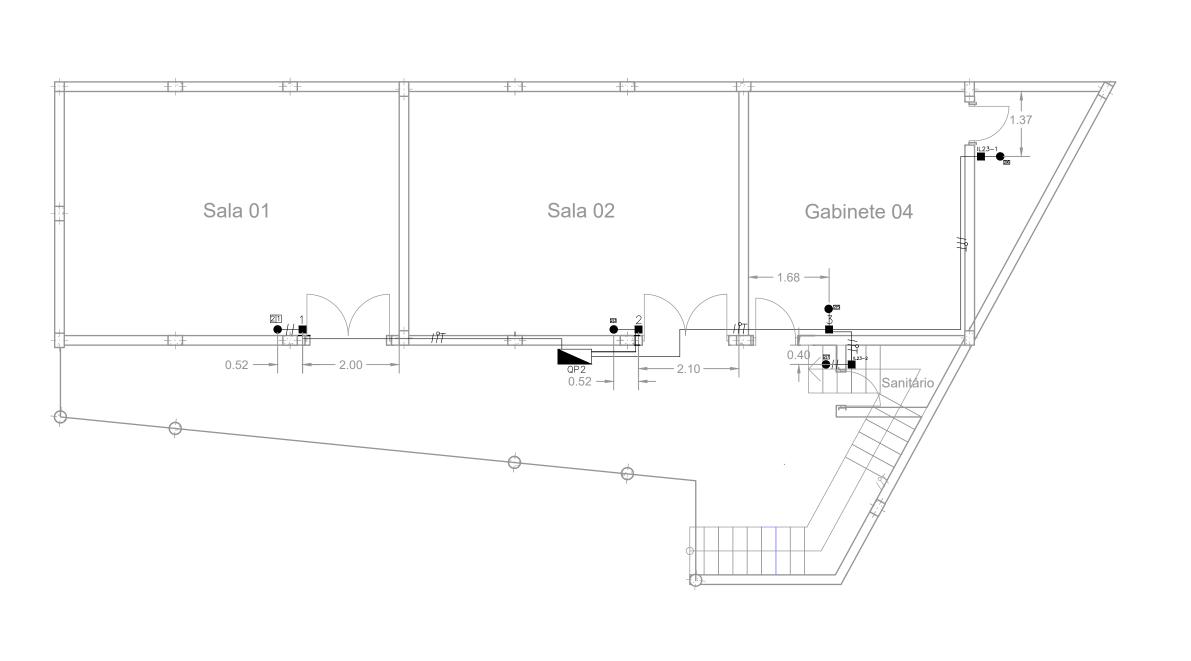
senhou	Data	Assinatura		
o Martins	07/06/2024			Cota de Caixa de aparelhagem
ifivou	Data	Assinatura	Peças Desenhadas	lluminação
F. Chachaia, Eng.	07/06/2024			1 Andar
io Zucula	07/06/2024			
1:100				Anexo 2
	Project		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	A2.13



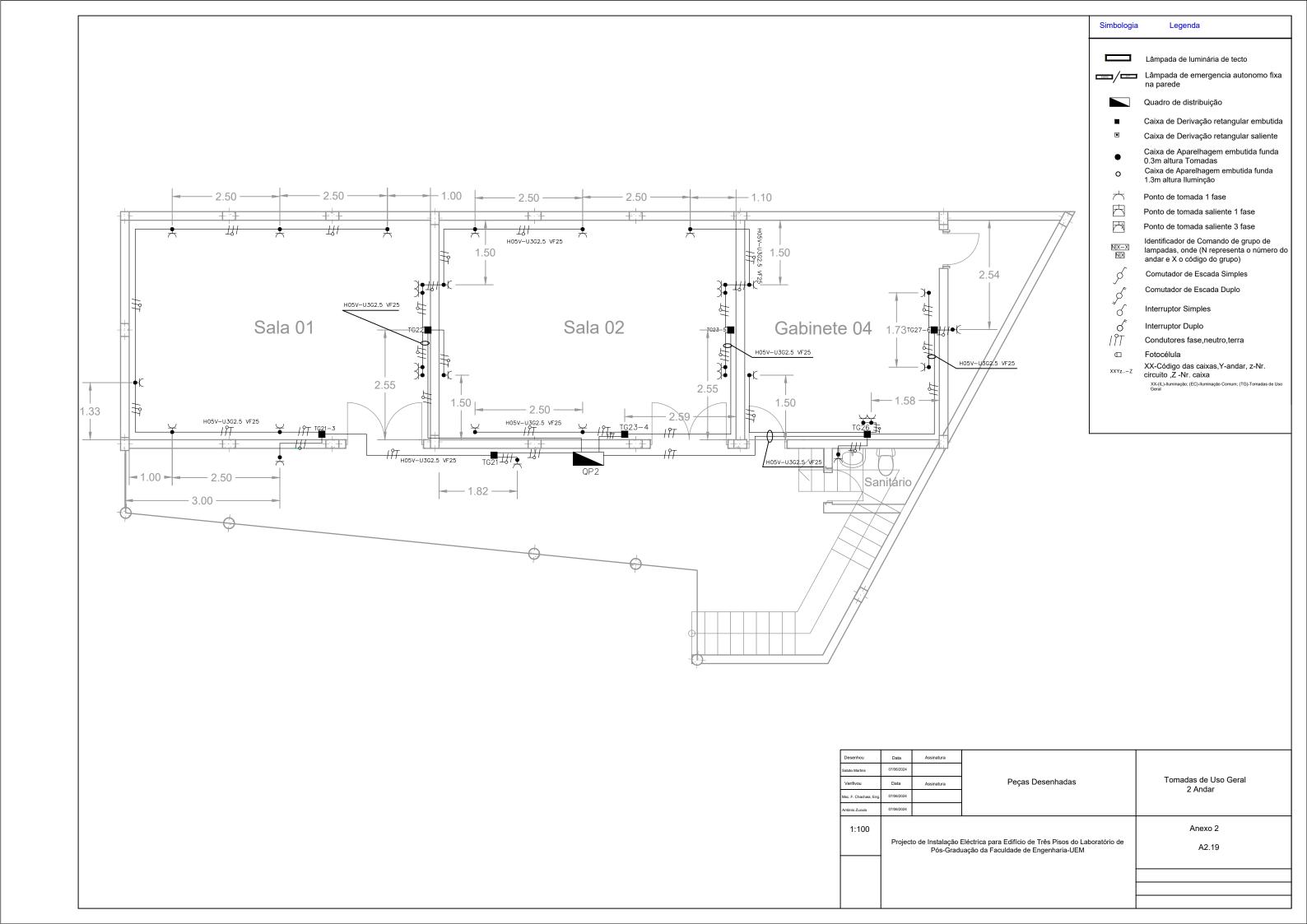
senhou	Data	Assinatura		
lo Martins	07/06/2024			
rifivou	Data	Assinatura	Peças Desenhadas	Tomadas de Uso Específico
F. Chachaia, Eng.	07/06/2024			1 Andar
nio Zucula	07/06/2024			
1:100	Project		Eléctrica para Edifício de Três Pisos do Laboratório de Iação da Faculdade de Engenharia-UEM	Anexo 2 A2.15

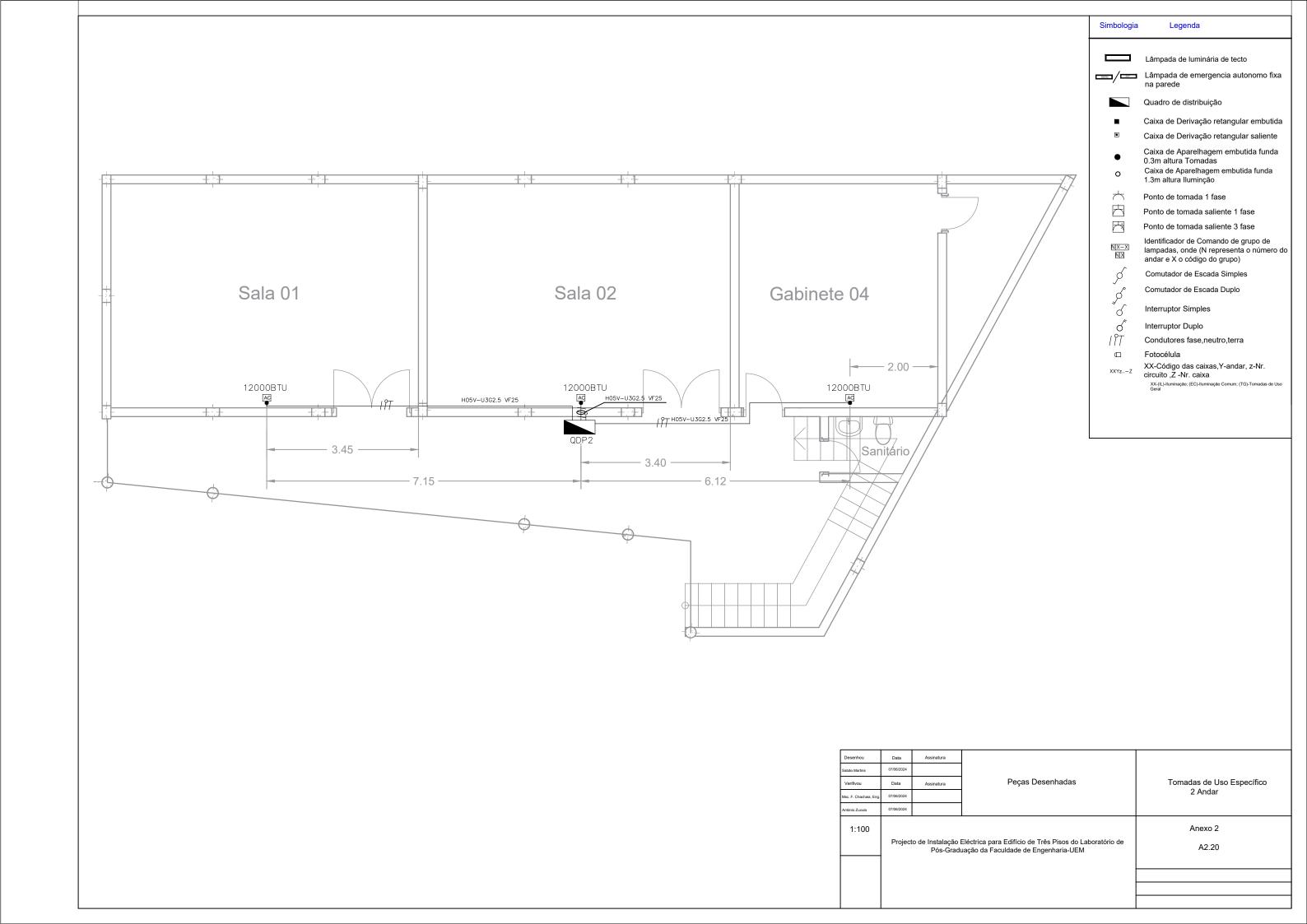

Simbologia

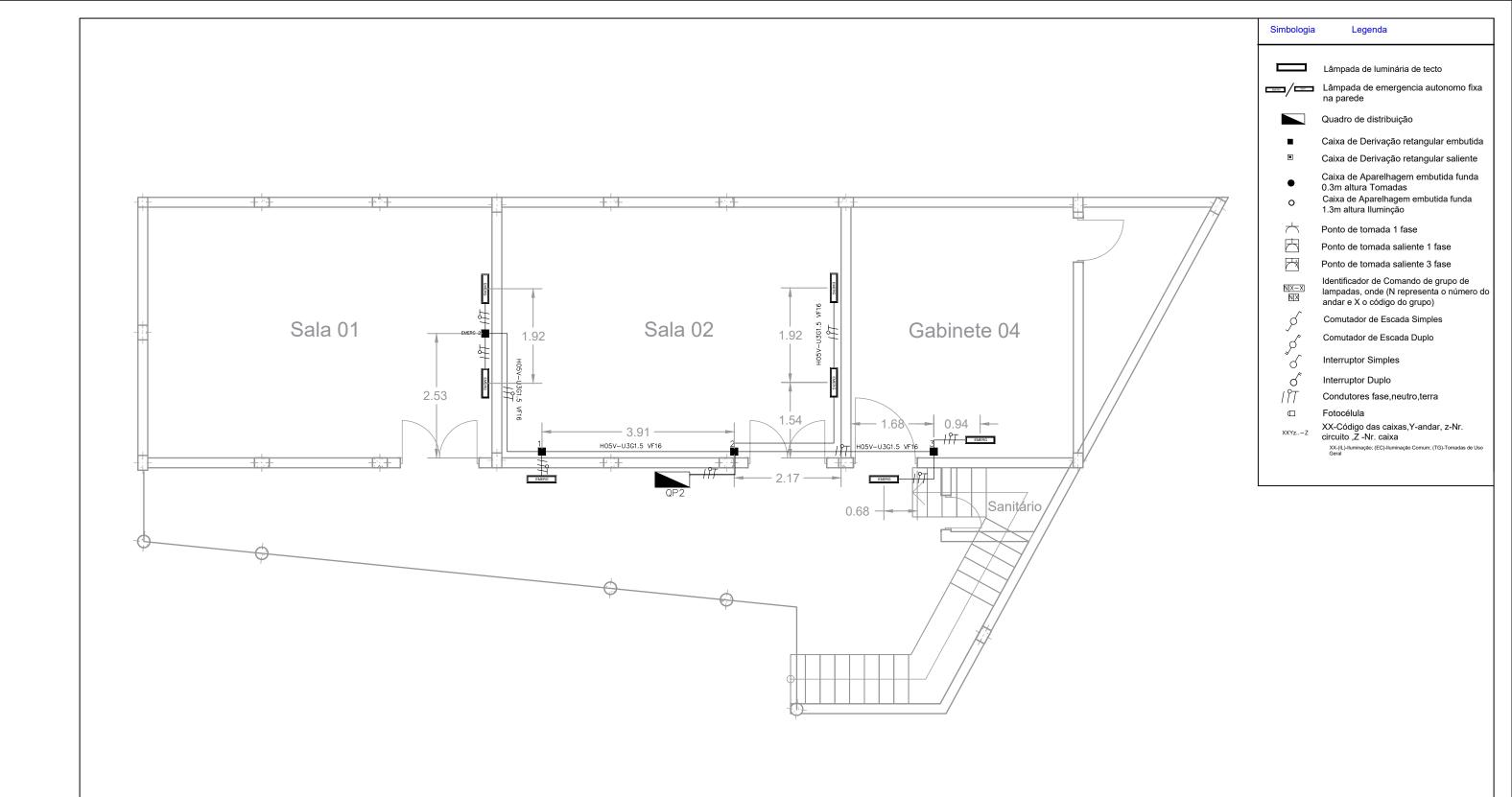
Legenda


Lâmpada de luminária de tecto

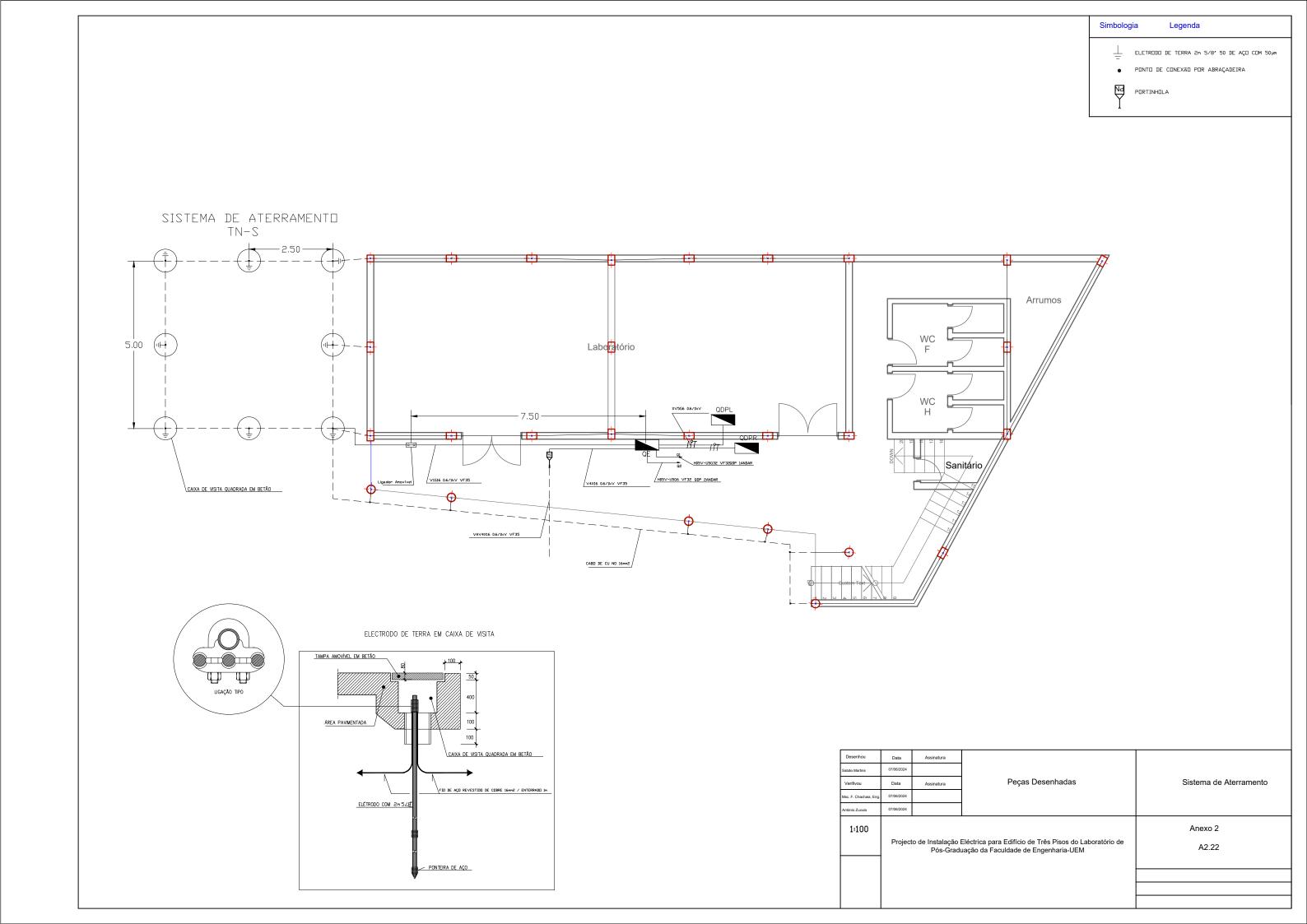
esenhou	Data	Assinatura		
bão Martins	07/06/2024			
'erifivou	Data	Assinatura	Peças Desenhadas	Iluminação de Emergêçencia
c. F. Chachaia, Eng.	07/06/2024			1 Andar
tónio Zucula	07/06/2024			
1:100	Projec		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	Anexo 2 A2.16

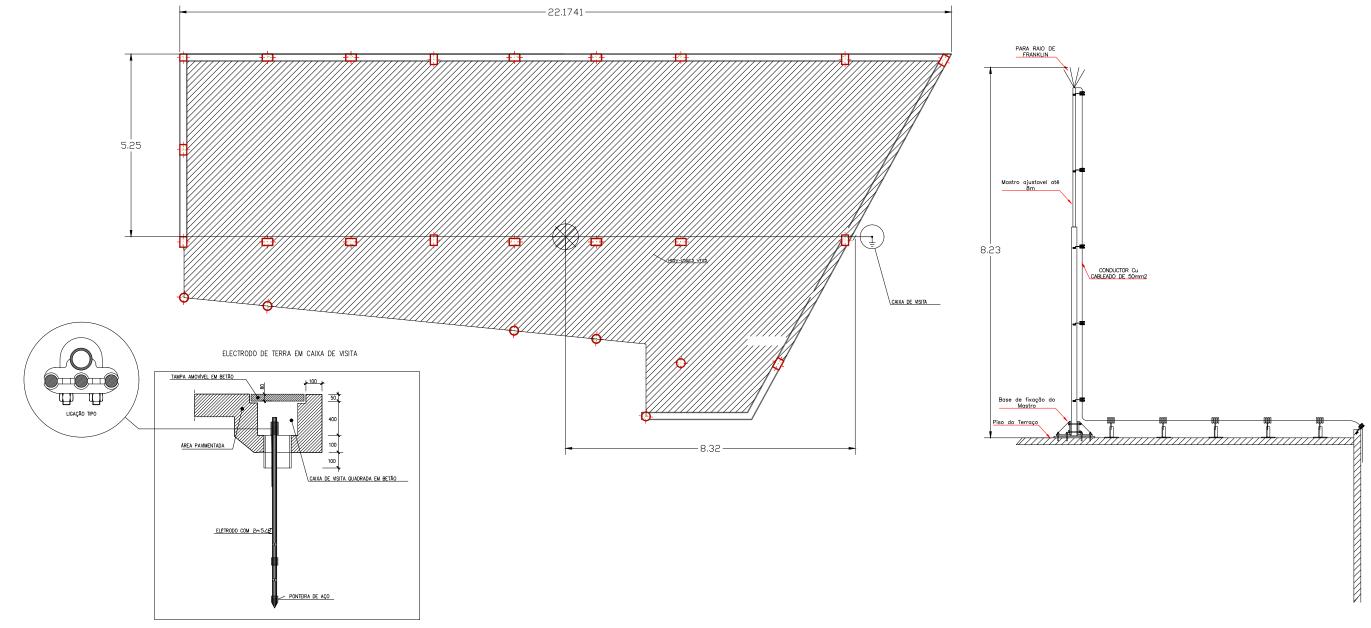



Desennou	Data	Assinatura		
Sabão Martins	07/06/2024			
Verifivou	Data	Assinatura	Peças Desenhadas	Iluminação 2 Andar
Msc. F. Chachaia, Eng.	07/06/2024			
António Zucula	07/06/2024			
1:100	Project		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	Anexo 2 A2.17

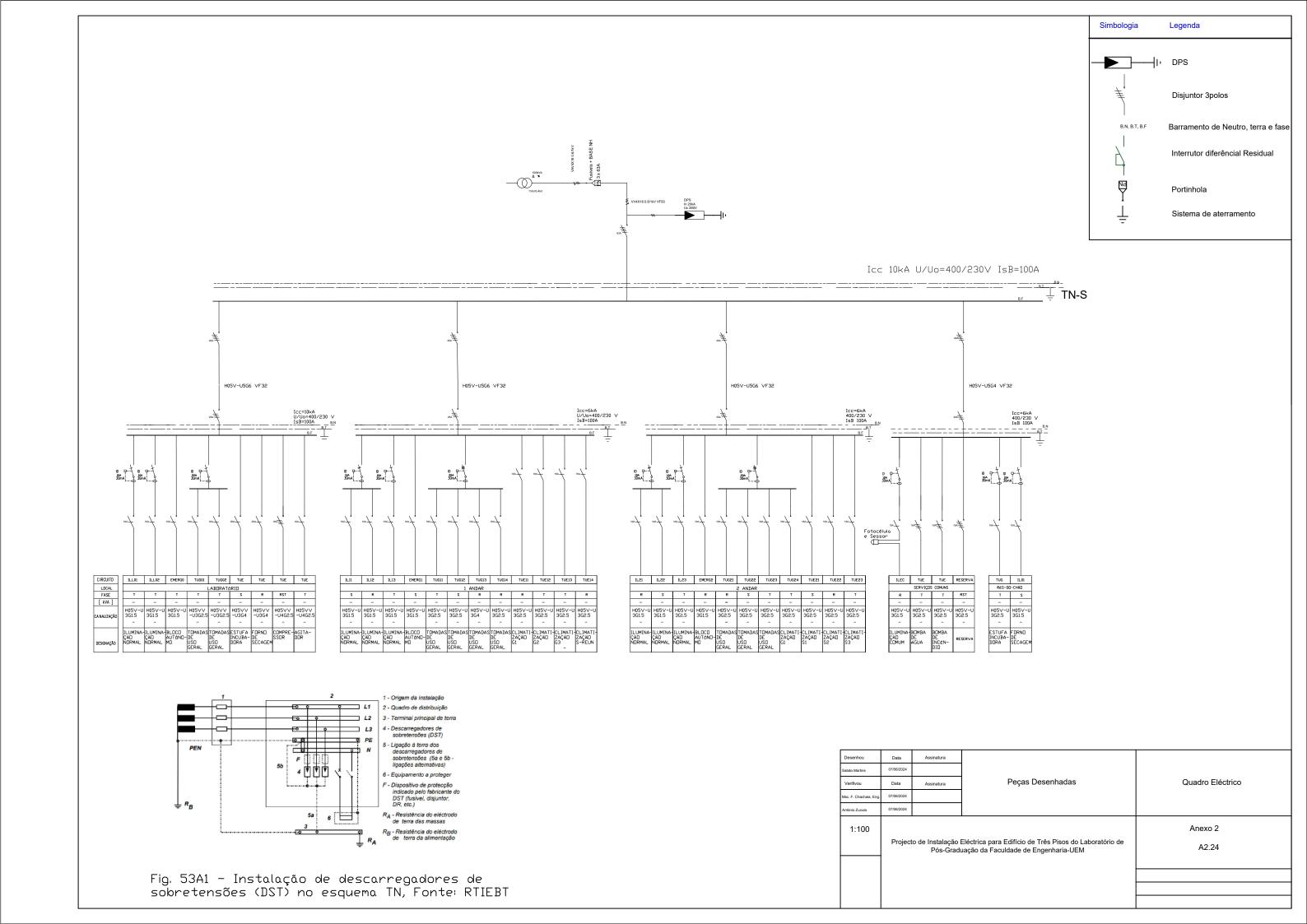


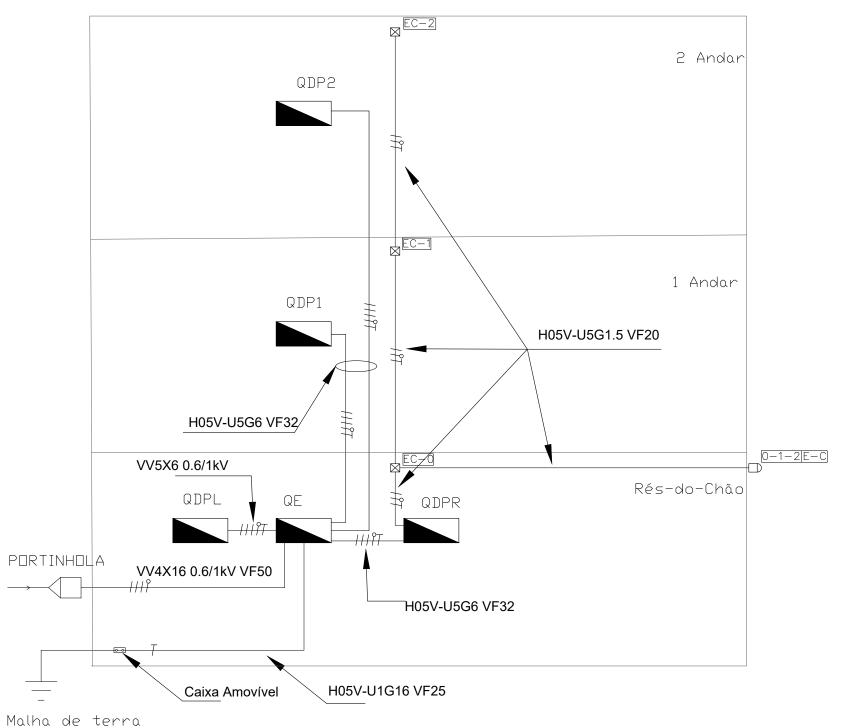
Simbologia Legenda Lâmpada de luminária de tecto Lâmpada de emergencia autonomo fixa na parede Quadro de distribuição Caixa de Derivação retangular embutida Caixa de Derivação retangular saliente Caixa de Aparelhagem embutida funda 0.3m altura Tomadas Caixa de Aparelhagem embutida funda 1.3m altura Iluminção Ponto de tomada 1 fase Ponto de tomada saliente 1 fase Ponto de tomada saliente 3 fase Identificador de Comando de grupo de lampadas, onde (N representa o número do andar e X o código do grupo) Comutador de Escada Simples Comutador de Escada Duplo Interruptor Simples 8 Interruptor Duplo Condutores fase,neutro,terra XX-Código das caixas,Y-andar, z-Nr. circuito ,Z -Nr. caixa XX-(IL)-Iluminação; (EC)-Iluminação Comum; (TG)-Tomadas de Uso Geral


esenhou	Data	Assinatura		
ão Martins	07/06/2024			Cota de Caixa de aparelhagem
erifivou	Data	Assinatura	Peças Desenhadas	Iluminação
. F. Chachaia, Eng.	07/06/2024			2 Andar
ónio Zucula	07/06/2024			
1:100				Anexo 2
	Project		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	A2.18

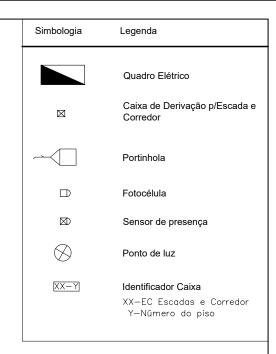


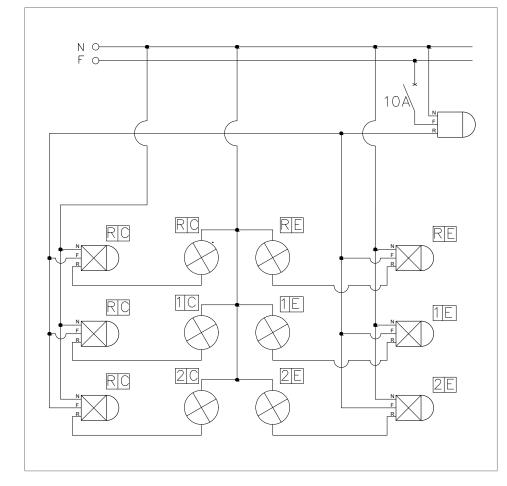
Desenhou	Data	Assinatura		
Sabão Martins	07/06/2024			
Verifivou	Data	Assinatura	Peças Desenhadas	Iluminação de Emergêçencia
Msc. F. Chachala, Eng.	07/06/2024			2 Andar
António Zucula	07/06/2024			
1:100	Project		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	Anexo 2 A2.21




esenhou	Data	Assinatura		
io Martins	07/06/2024			
rifivou	Data	Assinatura	Peças Desenhadas	Para- raio SPDA
F. Chachaia, Eng.	07/06/2024			
nio Zucula	07/06/2024			
1:100	Project		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	Anexo 2 A2.23

Simbologia


Legenda


ESQUEMA UNIFILAR DE INTERCONEXÃO QUADROS ELÉCTRICOS

Nota: 1. Os Quadros Eléctricos serão montados a uma altura de 1.60m do piso correspondente consunte a posição das plantas. 2. O Controle de das luminárias do corredores e escadas serão com uma ligação série de sensór de preseça e fotocélula.

CIRCUITO DE COMANDO DE LAMPADAS DOS CORREDORES E ESCADAS

Desenhou	Data	Assinatura		
Sabão Martins	07/06/2024			Ligação dos Quadros e Caixas
Verifivou	Data	Assinatura	Peças Desenhadas	de derivação dos pisos p/ IL Escadas e Corredor
/Isc. F. Chachaia, Eng.	07/06/2024			VISTA FRONTAL
António Zucula	07/06/2024			
1:100	Projec		Eléctrica para Edifício de Três Pisos do Laboratório de uação da Faculdade de Engenharia-UEM	Anexo 2 A2.25

Tabela A3- 26: QUADRO XIV Potências mínimas e coeficientes de simultaneidade a considerar no dimensionamento de instalações de utilização para iluminação e tomadas de usos gerais

.

	TD (0 1 11 1	0.61.1
Tipo de local	Potência por unidade	Coeficiente de
•	de área (W/m²)	simultaneidade
Estabelecimentos recebendo público:		
Estabelecimentos hospitalares e		
semelhantes:		
sememanes.		
De área igual ou inferior a 2500 m ²	20	0,4
De área superior a 2500 m ²	20	0,3
•		ŕ
Estabelecimentos de ensino:	30	1
Locais de culto, salas de reunião, salas		
de conferência, bibliotecas, museus	10	1
Salas de exposição	20	1
Bancos	20	1
P		
Escritórios:	20	
De área igual ou inferior a 1000 m ²	30	1
De área superior a 1000 m ²	30	0,75
Estabelecimentos de indústria hoteleira:		
De área igual ou inferior a 1000 m ²	20	0,5
De área superior 1000 m ² e igual ou	20	0,5
inferior a 4000 m ²	20	0,4
De área superior a 4000 m ²	20	0,3
De area superior a 1000 in	20	0,5
Armazéns:		
De área igual ou inferior a 1000 m ²	4	1
De área superior a 1000 m ²	4	0,75
Lojas	30	1
Restaurantes, cafés, cervejarias	20	1
Estabelecimentos industriais:		
Fábricas		1
Postos de distribuição de combustível		1
líquidos ou gasosos	4	1
ilquidos ou gasosos	-	1

Fonte: RSUIEE (Artigo 418.º - Comentário)

Tabela A3- 17: Tabela 1- Intensidades admissíveis de cabos

TABELA	Intensidades admissíveis em cabos de tensão
1	nominal 0,8/1,2 kV ou 2,4/3,6 kV

SECÇÃO		CABO	S INSTALADOS	RA OA	CABOS ENTERRADOS			
	NOMINAL mm²	1 condutor	2 condutores	3 e 4 - condutores	1 condutor	2 condutores	3 e 4 condutores	
	1,5	27	22	20	34	30	25	
		36	30	28	45	40	35	
	2,5	48	40	36	60	50	45	
	6	60	50	48	75	65	60	
	10	85	70	65	105	90	80	
	16		95	90	140	120	110	
	25	115	125	110	180	155	135	
	35	145	150	130	220	185	165	
		175	180	150	260	220	190	
COBRE	70	205	225	195	325	280	245	
8	05	260	270	235	390	335	295	
O	A CONTRACTOR OF THE PARTY OF TH	310	305	270	445	380	340	
	120 150	355	350	310	500	435	390	
	185	400 440	390	355	550	490	445	
	240	500	455	410	625	570	515	
	300	555	510	470	695	640	590	
	400	630	610	560	785	760	700	
	500	685	-	-	855		_	
	10	- 90	75	70	115	95	90	
	16	115	100	90	145	125	110	
1	25	140	120	105	170	150	130	
	35 50	165	150	125	210	180	155	
	. 70	210	180	155	260	225	195	
ı	95	250	215	190	310	270	235	
l,	. 4	285	245	215	355	305	270	
l	120	320	280	250	400	350	310	
1	185	. 350	310	285	440	390	355	
	185	400	365	330	500	455	410	
	280	430	-	_	540	-	_	
	300	445	410	375	555	510	470	
1	380	495	_	_	620	_	-	
	400	505	490	450	630	610	560	
1	480	535		_	670	_	-	
	500	550	-	_	685	_	-	

Tabela A3- 28:Factores de correcção

TABELA	Factores multicon	de co dutor	es e	cção ente	rra	ara d dos	abo (β)	s			
NÚMERO DE CABOS COM PEQUENO AFASTAMENTO Multiplicar os valores das tabelas 1 a 3 por		2	3	4	5	6	8	10			
		0,90	0,80	0,75	0,70	0,65	0,62	0,60			
TABELA	Factores cabos m	de co	orre	cçã	o p	ara (grup	oos	de (β)		
NÚMERO DE (PEQUENO AF	TOTAL STREET, TOTAL STREET, ST	2	3	4							
Multiplicar os valores das tabelas 1 a 3 por		0,80	0,75	0,70							
TABELA								~ ~			
6	Factore	s de c os ao	orre ar (ecçã β)	o p	ara	cab	os			
6 NÚMERO DE	instalad	s de c os ao	ar (β)		ara	cab	08	_		
6	instalad	Cabos o	ar (β)		3	cabe	08			
NÚMERO DE Multiplicar o	instalad	Cabos o	om o ento	β) 3	(90	Cab	08			
6 NÚMERO DE Multiplicar o	instalad	Cabos o pequeno afastam Cabos encosta	om o ento	β) 0,9 0,8	95 0. 30 0	90 75	tem	per	ratu	ras	
NÚMERO DE Multiplicar das tabelas	instalad CABOS DISTAIR PACTOR Ambien	Cabos o pequeno afastam Cabos encosta	om o ento	β) 0,9 0,8	95 0. 30 0	90 75	tem	per		1240	35
NÚMERO DE Multiplicar das tabelas	instalad CABOS DISTANTINE CABOS DISTANTINE CABOS DISTANTINE CABOS PRACTOR AMBIENTE COS VAIORES	Cabos o pequeno afastam Cabos encosta	om o ento	β) 0,9 0,8 ecçi	95 0. 30 0 5 de	90 75 para	tem C (iper Y)	25	30	8333

Tabela A3- 29: Tabela 8 Características das almas condutoras

TABELA

Características das almas condutoras de cobre

			RÍGIDAS		
	Res	sistência máxima	em corrente con Ω/km	tínua a 20° C	
SECÇÃO	NÚMERO	Cabos mono e cabo condutores	s com	Cabos multicondutores cableados	
mm²	DE FIOS	Cobre não estanhado	Cobre estanhado	Cobre não estanhado	Cobre estanhado
			90 F	_	_
0,2	1	88,5	89,5	_	
0,3	1	53,1	53,7	_	_
0,5	1	35,4	35,8 24,0	_	_
0,75	1	23,8	17.9	18,1	18,2
1	1	17,7	12,0	12,1	12,2
1,5	1	11,9	7,21	7,28	7,35
2,5	1	7,14 4,47	4,51	4,56	4,60
4	1	2,97	3,00	3,03	3,06
6	1	1,79	1,81	1,83	1,84
10	7	1,13	1,14	1,15	1,16
16	7	0,712	0,719	0,727	0,734
25	7	0,514	0,519	0,524	0,529
35	19	0,379	0,383	0,387	0,391
50	19	0,262	0,265	0,268	0,270
70	19 19	0,189	0,191	0,193	0,195
95	37	0,150	0,151	0,153	0,154
120	37	0,122	0,123	0,124	0,126
150	37	0,0972	0,0982	0,0991	0,100
185	61	0,0740	0,0747	0,0754	0,0762
240	61	0,0590	0,0595	0,0601	0,0607
300	61	0,0461	0,0465	0,0470	0,0475
400	61	0,0366	0,0369	0,0373	0,0377
500		0,0283	0,0286	0,0289	0,0292
630	127	0,0221	0,0224	0,0226	0,0228
1000	127 127	0,0176	0,0177	0,0179	0,0181

Tabela A3.1- 30: Características dos materiais eléctricos

Metais e ligas metálicas	Resistividade	Condutibilidade	Coeficiente
Metals e ligas Metalicas	a 20º c	de 20°c	de
	ohm/m/mm²	Mho/m/mm ²	
	Onm/m/mm	IVITIO/TTI/TTITTI	temperatura
	ρ	γ	α
Platina	0,112	9	0,0021
Ouro	0,021	47,5	0,0036
Prata	0,016	62,5	0,0036
Cobre	0,0178	56	0,0040
Latão	0,07	13	0,0015
Alumínio	0,03	34	0,0038
Ferro	0,13	7,7	0,0045
Chumbo	0,21	4,8	0,0038
Níquel	0,10	10	0,0040
Zinco	0,062	16	0,0039
Estanho	0,10	10	0,0040
Ferro-níquel	0,73	1,37	0,0009
Cromo - níquel ou termostan	0,10	0,9	0,0002
(cromo e níquel)			
Muillechrt (cobre, zinco e níquel)	0,30	3,3	0,0004
Manganina (cobre, níquel e	0,46	2,1	0,0000
manganês)			
Niquelina (cobre, zinco, níquel, ferro	0,43	2,3	0,0003
e manganês)			
Constantan (cobre e níquel)	0,50	2	0,0000

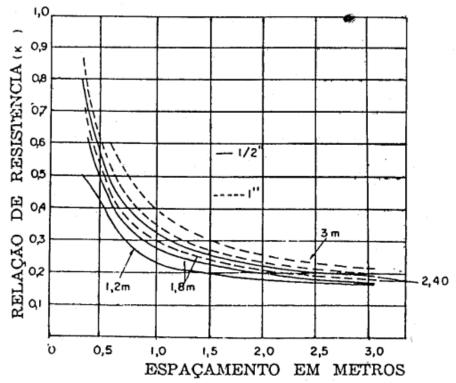


Figura A3-30: Oito hastes em quadrado vazio. Fonte: (KINDERMANN & COMPAGNOLO, 1995, p. 78)

Tabela A3- 31: QUADRO 52-C3

[E] QUADRO 52-C3

Correntes admissíveis, em amperes, para os métodos de referência A, B e C (de acordo com o quadro 52H)

Condutores isolados a policloreto de vinilo (PVC), para:

- três condutores carregados
- · cobre ou alumínio
- temperatura da alma condutora: 70°C
- temperatura ambiente: 30°C

Secção nominal dos condutores		Método de referência	
(mm2)	Α	В	C(*)
	Condutore	es de cobre	
1,5	13,5	15,5	17,5
2,5	18,0	21	24
4	24	28	32
6	31	36	41
10	42	50	57
16	56	68	76
25	73	89	96
35	89	110	119
50	108	134	144
70	136	171	184
95	164	207	223
120	188	239	259
150	216	-	299
185	245	-	341
240	286	-	403
300	328	-	464
	Condutores	de alumínio	
2,5	14,0	16,5	18,5
4	18,5	22	25
6	24	28	32
10	32	39	44
16	43	53	59
25	57	70	73
35	70	86	90
50	84	104	110
70	107	133	140
95	129	161	170
120	149	186	197
150	170	-	227
185	194	-	259
240	227	-	305

Fonte: RTIEBT

Tabela A3- 32: Selecção de tubagem em função da quantidade de cabos inseridos

Secção	Diâmetro nominal dos tubos (mm)								
nominal dos condutores	Número de condutores								
(mm²)	1	2	3	4	5				
1,5	12	12	16	16	20				
2,5	12	16	16	20	20				
4	12	16	20	20	25				
6	12	16	20	25	25				
10	16	25	25	32	32				
16	20	25	32	32	40				
25	25	32	40	40	50				
35	25	40	40	50	50				
50	32	40	50	50	63				
70	32	50	63	63	63				
95	40	50	63	75	75				
120	40	63	75	75	90				
150	50	63	75	90	90				
185	50	75	90	90	110				
240	63	75	90	110	110				
300	63	90	110	110					
400	75	110							
500	75	110							

Fonte: RTIEBT

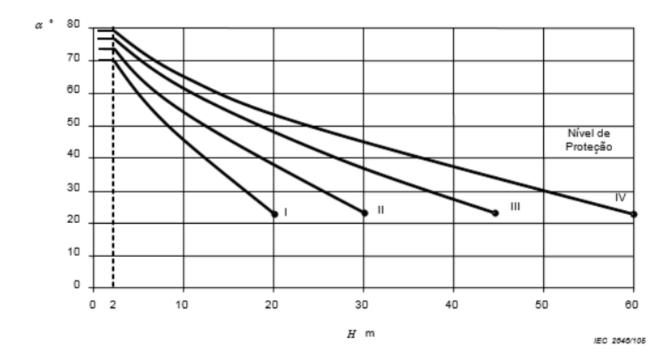


Figura A3- 32: Relação de Altura da edificação e o ângulo de protecção Fonte: NP EN 62305-3

Tabela A3- 33: Quadro 1 – Material, configuração e secção eficaz mínima dos condutores, captores e condutores de baixada.

Materiais	Configuração	Area da secção eficaz
Political Control	Em fita maciço	50
Cobre	Circular maçico b)	50
Cobre estanhado	Cableado b)	50
Coole estalliado	Circular maçico	176
	Em fita maciço	70
Alumínio	Circular maçico	50
	Cableado	50
	Em fita maciço	50
•••••	Circular maçico	50
Liga de alumínio	Cableado	50
	Circular maçico c)	176
Liga de alumínio com revestimento em cobre	Circular maçico	50
	Em fita maciço	50
	Circular maçico	50
Aço galvanizado por imersão a quente	Cableado	50
	Circular maçico c)	176
	Circular maçico	50
Aço com revestimento em cobre	Em fita maciço	50
	Em fita maciço d	50
A an incominational	Circular maçico d)	50
Aço inoxidável	Cableado	70
	Circular maçico c)	176
	-	

As características mecânicas e elétricas, bem como as propriedades de resistência à corrosão devem satisfazer os requisitos da futura série da EN 50164.

Fonte: NP EN 62305-3

b) 50 mm² (diâmetro de 8 mm) poderá ser reduzido para 25 mm² em certas aplicações onde a resistência mecânica não constitui um requisito essencial. Neste caso, deverá ter-se em consideração a redução do espaçamento entre as fixações.

c) Aplicável às hastes de captura e hastes de terra direcionadas. Para as hastes de captura relativamente às quais os esforços mecânicos, tal como a carga originada pelo vento, não são críticos, poderá ser utilizada uma haste com um diâmetro de 9,5 mm e um comprimento de 1 m.

d) Se as considerações térmicas e mecânicas constituem elementos importantes, então estes valores deverão ser aumentados para 75 mm².

Tabela A3.1- 34: Quadro 2 - Materiais, configuração e dimensões mínimas dos eléctrodos de terra

		Dimensões							
Materiais	Configuração	Diâmetro da haste de terra mm	Condutor de terra mm²	Placa de terra mm					
	Cableado		50						
	Circular maçico	15	50						
Cobre	Em fita maciço		50						
Cobre estanhado	Canalização	20							
	Placa sólida			500 × 500					
	Placa de rede c)			600 × 600					
	Circular maçico	14	78						
	Canalização	25							
Aço galvanizado por	Em fita maciço		90						
imersão a quente	Placa maciço			500 × 500					
	Placa reticulada			600 × 600					
	Perfil	ď							
	Cableado		70						
Aço nu ^{b)}	Circular maçico		78						
	Em fita maciço		75						
Aço com revestimento em cobre	Circular maçico	14 ^Đ	50						
	Em fita maciço		90						
Aço inoxidável	Circular maçico	15 [®]	78						
Aço inoxidavei	Em fita maciço		100						

a) As características mecânicas e elétricas, bem como as propriedades de resistência à corrosão devem satisfazer os requisitos da futura série da EN 50164.

Fonte: NP EN 62305-3

Tabela A3.2- 34: Dispositivos de Protecção contra surtos (DPS) - 5SD7

DPS CLAS	SE II											
Código	Polos	Aplicação	U _n	U _c	U _p	Ι _{imp} (10 / 350 μs)	Ι _ո (8 / 20 μs)	Ι _{max} (8 / 20 μs)	t _A	Proteção Back-up	Sist. aterram.	Sinal. remota
5SD7 481-0	1P	1N		260 V AC 2)	≤ 1,5 kV ²⁾	12 kA	20 kA 2)	40 kA 2)	≤ 100 ns ²⁾	-	TN / TT	Não
5SD7 461-0 5SD7 461-1	1P	1F	240 V AC	350 V AC 5)	≤ 1,5 kV ³⁾		20 kA 5)	40 kA 5)	≤ 25 ns 1)	125 A gL/gG ⁶⁾	TN/TT	Não Sim
5SD7 481-1*	1P (2M)	1N	690 V AC	800 V AC 5)	≤ 5 kV ³⁾ ≤ 5 kV ⁴⁾		15 kA ⁵⁾	30 kA 5)	≤ 100 ns 1)	100 A gL/gG ⁶⁾ 80 A gL/gG ⁷⁾	TN-C/IT	Sim
5SD7 463-0 5SD7 463-1	3P	3F		350 V AC 1)	≤ 1,5 kV ³⁾		20 kA ¹⁾ (por fase)	40 kA ¹⁾ (por fase)	≤ 25 ns 1)		TN-C	Não Sim
5SD7 464-0 5SD7 464-1	4P	3F + N	240/415 V AC	0/415 V AC 350 V AC 1) 260 V AC 2)		-	20 kA ¹⁾ (por fase) 20 kA ²⁾	40 kA ¹⁾ (por fase) 40 kA ²⁾	≤ 25 ns 1) ≤ 100 ns 2)	125 A gL/gG ⁶⁾ 80 A gL/gG ⁷⁾	TN-S / TT	Não Sim
5SD7 473-1	3P	3F	500 V AC	580 V AC 1)	≤ 2,5 kV ³⁾ ≤ 2,5 kV ⁴⁾		15 kA ¹⁾ (por fase)	30 kA ¹⁾ (por fase)	≤ 25 ns 1)		IT	Sim
5SD7 483-5	3P	3F	554/960 V AC	760 V AC ⁵⁾	≤ 2,9 kV ³⁾		15 kA ⁵⁾	30 kA 5)	S 23 NS "	100 A gL/gG ⁶⁾ 80 A gL/gG ⁷⁾	TN-C/IT	Sim

Fonte: Catálogo da Siemens

b) Deve ser integrado no betão com uma profundidade mínima de 50 mm.

Placa reticulada com um comprimento mínimo total do condutor de 4,8 m.

d) Diferentes perfis são permitidos com uma secção eficaz de 290 mm² e uma espessura mínima de 3 mm, p.ex. perfil transversal.

No caso de uma disposição de ligação à terra de fundação do tipo B, o elétrodo de terra deve estar conectado de forma correta, pelo menos a cada 5 m, com a armadura de aço.

Tabela A3-35: Condutores rectangulares usados para barramento

Sistema de distribuição "padrão"
Conexão com ou sem terminais Starfix para cabos
Teste realizado com fio incandecente de acordo com a norma EN 60695-2-11 : 960°C nos suportes das partes ativas

Emb.	Ref.	Bloce	o de distribu	iição modul	ar mo	onob	locos	Emb.	Ref.	Bloce	o de distribu	ição modula	ır assoc	ciáveis
		Forne transp Possib Cab 3	cido em trilho ud cido com fund parente pilidade de ide sobre cada b pilidade de ad	o isolante e ta entificação cor arra	mpa o	de pro cador	es			Equip: Permit	ao em trilho udado com porta de a realização olar por associolares	-etiquetas de um bloco d	de distrib	uição
		aumer (excet Bipola	ntar o número lo ref. 048 77) ares	de saídas de l				4	048 71	Imáx (A) 125	Conexões rígido (mm²) 4 x 16 a 50 12 x 1.5 a 10	por barras flexivel (mm²) 4 x 16 a 35 12 x 1.5 a 10	loc pico (kA) 35	Nº de módulo 2
		Equip	ados de 2 bar I			ı	ı	4	048 83	160	1 x 35 a 70	1 x 25 a 50	27	2
5	048 81	Imáx (A) 40	Conexões rígido (mm²) 11 x 1,5 a 4	por barras flexivel (mm²) 11 x 0,75 a 4	lcc pico (kA) 20	lcw (kA)	N° de módulos 6				7 x 2,5 a 10 2 x 6 a 25 3 x 10 a 35	7 x 1,5 a 6 2 x 6 a 16 3 x 10 25		
10	048 80	100	2 x 6 a 16 5 x 2,5 a 10 2 x 10 a 25	2 x 4 a 10 5 x 1,5 a 10 2 x 6 a 16	20	4,5	4	4	048 73	250	1 x 70 a 150 4 x 2,5 a 16 6 x 10 a 35	1 x 70 a 120 4 x 2,5 a 10 6 x 10 a 25	60	2
5	048 82	125	11 x 2,5 a 10	11 x 1,5 a 10	18	4,5	8			Born	es de distrib	uição		
			2 x 10 a 25 2 x 10 a 35	2 x 6 a 16 2 x 10 a 25				1	048 67		- 6 saidas 25 n			co (kA) 30
			oolares ados de 4 ban	ras						à jusa	ser acoplado d nte dos DPX ³ 1	60, Vistop		
5	048 85	Imáx (A)	Conexões rigido (mm²) 11 x 1,5 a 4	por barras flexivel (mm²) 11 x 0,75 a 4	lcc pico (kA) 20	lcw (kA)	N° de módulos 6	1	048 68	250 A 4 said 2 said	e 160 A, DX ³ 1 as 35 mm ² flex as 25 mm ² flex ser acoplado d	ivel e ivel para	:	36
10	048 84	100	2 x 6 a 16 5 x 2,5 a 10 2 x 10 a 25	2 x 4 a 10 5 x 1,5 a 10 2 x 6 a 16	20	4,5	4			jusant	e dos DPX3 250), DPX-IS 250		
5	048 86	125	7 x 2,5 a 10 2 x 10 a 25 2 x 10 a 35	7 x 1,5 a 10 2 x 6 a 16 2 x 10 a 25	20	4,5	6							
5	048 881	125	11 x 2,5 a 10 4 x 10 a 35	11 x 1,5 a 6 4 x 6 a 25	14,5	4,2	8							
1	048 76²	125	14 x 2,5 a 10 1 x 10 a 25 1 x 10 a 35	14 x 1,5 a 10 1 x 6 a 16 1 x 6 a 25 1 x 16 a 35	20	4,5	10							
1	048 791	160	8 x 2,5 a 10 4 x 10 a 25 2 x 10 a 35 1 x 35 a 70	8 x 1,5 a 10 4 x 6 a 16 2 x 10 a 25 1 x 35 a 70	27	8,4	10							
1	048 77	250	6 x 2,5 a 16 2 x 10 a 25 2 x 10 a 35 1 x 16 a 50 1 x 50 a 120	6 x 2,5 a 10 2 x 6 a 16 2 x 10 a 25 1 x 16 a 35 1 x 50 a 120	42	14,4	9							

Fornecido com terminais para cabos, para cabos fiexíveis de 25 mm²
 Condutores de entrada devem ser equipados com terminais para cabos

Fonte: Legrand Catalogo

Tabela A3- 36: Características do fusível NH

100 kA / 690 V ca

		Características técnicas						
	Referência	Tamanho	Corrente (A)	I²t - pré-arco	Pt total - arco	Potência dissipada com 0,8x l _n	Código	
				690 V	ca (A²s)	(W)		
	FNH000-20K-A	000	20	32	175	2,8	13735555	
	FNH000-25K-A		25	46	330	3,5	13735656	
100	FNH000-35K-A		35	56	400	6,2	13737105	
BUEST	FNH000-40K-A		40	110	670	6,2	13737107	
BR SL-SGS eggs-color eggs-color	FNH000-50K-A		50	250	1.550	6,5	13737128	
NH000	FNH000-63K-A]	63	410	2.200	8	13737129	
4000	FNH000-80K-A	1	80	570	3.200	12	13737130	
20107	FNH000-100K-A		100	980	6.200	14	13737131	
	FNH000-125K-A	1	125	1.400	8.100	20,5	13737132	
	FNH00-20K-A	00	20	16	240	3,2	10687494	
	FNH00-25K-A		25	19	255	3,5	10701722	
Di III	FNH00-35K-A		35	23	430	5	10701721	
ALC: UNIVERSITY OF	FNH00-40K-A		40	56	580	7	10702117	
600	FNH00-50K-A		50	130	1.430	9	10701718	
THE OF	FNH00-63K-A		63	180	2.170	10,5	10705764	
45 44	FNH00-80K-A		80	270	2.710	13,5	10705995	
5000	FNH00-100K-A		100	400	4.530	14	10707110	
20100	FNH00-125K-A		125	810	6.350	16,5	10707231	
	FNH00-160K-A		160	2.100	15.270	22,5	10701724	
	FNH00-200K-A	1	200	2.900	25.870	26,5	10710732	
	FNH00-250K-A	1	250	6.200	43.980	30,5	10711445	
	FNH1-63K-A		63	63	770	15	10806688	
	FNH1-80K-A	1	80	175	1.610	19	10807549	
market a	FNH1-100K-A	1	100	320	3.050	21	10807553	
GEQ.	FNH1-125K-A	1	125	695	6.360	25	10807554	
30 .2	FNH1-160K-A		160	1.460	13.090	29,5	10808545	
Self -	FNH1-200K-A	1	200	2.420	16.380	34,5	10809133	
	FNH1-250K-A		250	4.920	29.810	40,5	10809489	
	FNH1-315K-A		315	7.310	39.590	48	10809575	
	FNH1-350K-A	1	350	11.430	64.870	52	10814896	
-	FNH1-400K-A	1	400	16.950	98.860	59	10815073	

Fonte: WEG Catálogo

Anexo4: Processo Executivo do Projecto

Figura A4- 37: Equipotencialização da Edificação Fonte: (Autor)

Anexo4: Processo Executivo do Projecto

Figura A4- 38: Tubagem para a canalização de Entrada e o cabo de cobre nú para terra. Fonte: Autor

Anexo4: Processo Executivo do Projecto

Figura A4- 1: PT 500kVA DEEL. Fonte: Autor